cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378843 Number of compositions (ordered partitions) of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 7, 1, 0, 0, 1, 1, 24, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 151, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 31, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 864, 1, 1, 0, 0, 1, 127, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 7, 1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2024

Keywords

Comments

From Robert Israel, Dec 15 2024: (Start)
If n is squarefree, a(n) >= 1, as [n] is a composition.
If n = b * c where b and c are coprime and c is squarefree, then a(n) >= a(b), as for any composition C of b into distinct squarefree divisors, multiplying each element of C by c gives a composition of n into distinct squarefree divisors. (End)

Examples

			a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
a(12) = 24 because we have [6, 3, 2, 1] and 4! = 24 permutations.
		

Crossrefs

Programs

  • Maple
    ptns:= proc(S,n) option remember;
      # subsets of S with sum n
      local m,s;
      if convert(S,`+`) < n then return {} fi;
      if n = 0 then return {{}} fi;
      s:= max(S);
      if s > n then return procname(select(`<=`,S,n),n) fi;
      map(t -> t union {s}, procname(S minus {s},n-s)) union procname(S minus {s}, n)
      end proc:
    sfd:= proc(n) map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`) end proc:
    f:= proc(n) local t;
         add((nops(t))!, t = ptns(sfd(n),n))
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 15 2024
  • Mathematica
    a[n_] := Module[{d = Select[Divisors[n], SquareFreeQ]}, Total[(Length /@ Select[Subsets[d], Total[#] == n &])!]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Dec 10 2024 *)