cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378912 Irregular triangle read by rows: row n lists all positive m such that sigma(m) divides n, where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 2, 5, 1, 4, 1, 3, 7, 1, 2, 1, 1, 1, 2, 3, 5, 6, 11, 1, 9, 1, 4, 13, 1, 2, 8, 1, 3, 7, 1, 1, 2, 5, 10, 17, 1, 1, 3, 19, 1, 2, 4, 1, 1, 1, 2, 3, 5, 6, 7, 11, 14, 15, 23, 1, 1, 9, 1, 2, 1, 3, 4, 12, 13, 1, 1, 2, 5, 8, 29, 1, 16, 25, 1, 3, 7, 21, 31
Offset: 1

Views

Author

Paolo Xausa, Dec 10 2024

Keywords

Examples

			Triangle begins:
  n\k|  1   2   3   4   5   6 ...
  -------------------------------
   1 |  1;
   2 |  1;
   3 |  1,  2;
   4 |  1,  3;
   5 |  1;
   6 |  1,  2,  5;
   7 |  1,  4;
   8 |  1,  3,  7;
   9 |  1,  2;
  10 |  1;
  11 |  1;
  12 |  1,  2,  3,  5,  6, 11;
  13 |  1,  9;
  14 |  1,  4, 13;
  15 |  1,  2,  8;
  16 |  1,  3,  7;
  17 |  1;
  18 |  1,  2,  5, 10, 17;
  19 |  1;
  20 |  1,  3, 19;
  ...
		

Crossrefs

Cf. A074754 (row lengths), A319068 (right border), A378913 (row sums).
Cf. A000203.

Programs

  • Mathematica
    With[{nmax = 50}, Table[PositionIndex[Divisible[n, #[[;; n]]]][True], {n, nmax}] & [DivisorSigma[1, Range[nmax]]]]
  • PARI
    row(n) = select(x->(!(n % sigma(x))), [1..n]); \\ Michel Marcus, Dec 11 2024

Formula

T(n,k) <= n (see A319068).

A378915 Positive integers k such that k is not divisible by sigma(m) for any m >= 2, where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

1, 2, 5, 10, 11, 17, 19, 22, 23, 25, 29, 34, 37, 41, 43, 46, 47, 50, 53, 55, 58, 59, 61, 67, 71, 73, 79, 82, 83, 85, 86, 89, 94, 95, 97, 101, 103, 106, 107, 109, 113, 115, 118, 122, 125, 131, 134, 137, 139, 142, 145, 146, 149, 151, 157, 163, 166, 167, 170, 173
Offset: 1

Views

Author

Paolo Xausa, Dec 11 2024

Keywords

Crossrefs

Positions of ones in A378913.
Cf. A000203.

Programs

  • Mathematica
    With[{upto = 500}, Table[If[Count[Divisible[n, #[[;; n]]], True] == 1, n, Nothing], {n, upto}] & [DivisorSigma[1, Range[upto]]]]
  • PARI
    isok(m) = for(k=2, m, if (!(m % sigma(k)), return(0))); 1; \\ Michel Marcus, Dec 12 2024
Showing 1-2 of 2 results.