cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319068 a(n) is the greatest k such that A000203(k) divides n where A000203 is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 4, 7, 2, 1, 1, 11, 9, 13, 8, 7, 1, 17, 1, 19, 4, 1, 1, 23, 1, 9, 2, 13, 1, 29, 25, 31, 2, 1, 4, 22, 1, 37, 18, 27, 1, 41, 1, 43, 8, 1, 1, 47, 4, 1, 2, 9, 1, 53, 1, 39, 49, 1, 1, 59, 1, 61, 32, 31, 9, 5, 1, 67, 2, 13, 1, 71, 1, 73, 8, 37, 4, 45, 1, 79
Offset: 1

Views

Author

Michel Marcus, Sep 09 2018

Keywords

Comments

Sándor names this function the sum-of-divisors maximum function and remarks that this function is well-defined, since a(n) can be at least 1, and cannot be greater than n.

Crossrefs

Cf. A000203 (sigma), A070982 (the sum of divisors minimum function).
Right border of A378912.

Programs

  • Mathematica
    A319068[n_] := Module[{k = n}, While[!Divisible[n, DivisorSigma[1, k]], k--]; k];
    Array[A319068, 100] (* Paolo Xausa, Dec 11 2024 *)
  • PARI
    a(n) = {forstep (k=n, 1, -1, if ((n % sigma(k)) == 0, return (k)););}
    
  • PARI
    a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invsigmaMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

a(p+1) = p, for p prime. See Sándor Theorem 2 p. 4.

A074754 Number of integers k such that sigma(k) divides n.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 3, 2, 1, 1, 6, 2, 3, 3, 3, 1, 5, 1, 3, 3, 1, 1, 10, 1, 2, 2, 5, 1, 5, 3, 5, 2, 1, 2, 9, 1, 2, 4, 5, 1, 8, 1, 3, 3, 1, 1, 13, 2, 1, 2, 3, 1, 7, 1, 8, 3, 1, 1, 12, 1, 4, 4, 5, 2, 3, 1, 3, 2, 3, 1, 18, 1, 2, 3, 3, 2, 6, 1, 7, 2, 1, 1, 15, 1, 1, 2, 4, 1, 10, 4, 2, 5, 1, 1, 19, 1, 5, 2, 3, 1
Offset: 1

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Crossrefs

Row lengths of A378912.

Programs

  • Mathematica
    Table[Length[Select[Range[n], Divisible[n, DivisorSigma[1,#]]&]], {n, 1, 100}] (* Vaclav Kotesovec, Feb 16 2019 *)
  • PARI
    a(n)=sum(i=1,n,if(n%sigma(i),0,1))
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/(1-x^sigma(k)),x*O(x^sigma(n))),n))
    
  • PARI
    a(n) = {my(s = []); fordiv(n, d, s = setunion(s, invsigma(d))); #s;} \\ Amiram Eldar, Apr 18 2025, using Max Alekseyev's invphi.gp (see links).

Formula

Sum_{k=1..n} a(k) seems to be asymptotic to c*n*log(n) with c = 0.7...
G.f.: sum(k>=1, 1/(1-x^sigma(k))).
a(n) = Sum_{k=1..n} (1 - ceiling(n/sigma(k)) + floor(n/sigma(k))). - Wesley Ivan Hurt, Apr 21 2023

A378913 a(n) = sum of all positive m such that sigma(m) divides n, where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

1, 1, 3, 4, 1, 8, 5, 11, 3, 1, 1, 28, 10, 18, 11, 11, 1, 35, 1, 23, 7, 1, 1, 87, 1, 10, 3, 33, 1, 45, 42, 63, 3, 1, 5, 77, 1, 38, 30, 57, 1, 112, 1, 47, 11, 1, 1, 202, 5, 1, 3, 13, 1, 122, 1, 107, 52, 1, 1, 205, 1, 103, 39, 63, 10, 8, 1, 71, 3, 18, 1, 389, 1, 74, 11
Offset: 1

Views

Author

Paolo Xausa, Dec 11 2024

Keywords

Crossrefs

Row sums of A378912.
Cf. A378915 (positions of ones).
Cf. A000203.

Programs

  • Mathematica
    With[{nmax = 100}, Table[Total[PositionIndex[Divisible[n, #[[;; n]]]][True]], {n, nmax}] & [DivisorSigma[1, Range[nmax]]]]
  • PARI
    a(n) = vecsum(select(x->(!(n % sigma(x))), [1..n])); \\ Michel Marcus, Dec 11 2024

A378914 Smallest positive m such that sigma(m) does not divide n, where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 7, 2, 2, 3, 2, 2, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A378914[n_] := Module[{m = 1}, While[Divisible[n, DivisorSigma[1,++m]]]; m];
    Array[A378914, 100]
  • PARI
    a(n) = my(m=1); while (!(n % sigma(m)), m++); m; \\ Michel Marcus, Dec 11 2024
Showing 1-4 of 4 results.