cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A319048 a(n) is the greatest k such that A000010(k) divides n where A000010 is the Euler totient function.

Original entry on oeis.org

2, 6, 2, 12, 2, 18, 2, 30, 2, 22, 2, 42, 2, 6, 2, 60, 2, 54, 2, 66, 2, 46, 2, 90, 2, 6, 2, 58, 2, 62, 2, 120, 2, 6, 2, 126, 2, 6, 2, 150, 2, 98, 2, 138, 2, 94, 2, 210, 2, 22, 2, 106, 2, 162, 2, 174, 2, 118, 2, 198, 2, 6, 2, 240, 2, 134, 2, 12, 2, 142, 2, 270, 2, 6, 2, 12, 2, 158, 2, 330
Offset: 1

Views

Author

Michel Marcus, Sep 09 2018

Keywords

Comments

Sándor calls this function the totient maximum function and remarks that this function is well-defined, since a(n) can be at least 2, and cannot be greater than n^2 (when n > 6).

Crossrefs

Cf. A000010 (Euler totient), A061026 (the totient minimum function).
Cf. A319068 (the analog for the sum of divisors).
Right border of A378638.

Programs

  • Mathematica
    a[n_] := Module[{kmax = If[n <= 6, 10 n, n^2]}, For[k = kmax, True, k--, If[Divisible[n, EulerPhi[k]], Return[k]]]];
    Array[a, 80] (* Jean-François Alcover, Sep 17 2018, from PARI *)
  • PARI
    a(n) = {my(kmax = if (n<=6, 10*n, n^2)); forstep (k=kmax, 1, -1, if ((n % eulerphi(k)) == 0, return (k)););}
    
  • PARI
    \\ (The first two functions could probably be combined in a smarter way):
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ From A014197 by M. F. Hasler
    A057635(n) = if(1==n,2,if((n%2),0,my(k=A014197(n),i=n); if(!k, 0, while(k, i++; if(eulerphi(i)==n, k--)); (i))));
    A319048(n) = { my(m=0); fordiv(n,d, m = max(m,A057635(d))); (m); }; \\ Antti Karttunen, Sep 09 2018
    
  • PARI
    a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invphiMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Max_{d|n} A057635(d). - Antti Karttunen, Sep 09 2018

A378912 Irregular triangle read by rows: row n lists all positive m such that sigma(m) divides n, where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 2, 5, 1, 4, 1, 3, 7, 1, 2, 1, 1, 1, 2, 3, 5, 6, 11, 1, 9, 1, 4, 13, 1, 2, 8, 1, 3, 7, 1, 1, 2, 5, 10, 17, 1, 1, 3, 19, 1, 2, 4, 1, 1, 1, 2, 3, 5, 6, 7, 11, 14, 15, 23, 1, 1, 9, 1, 2, 1, 3, 4, 12, 13, 1, 1, 2, 5, 8, 29, 1, 16, 25, 1, 3, 7, 21, 31
Offset: 1

Views

Author

Paolo Xausa, Dec 10 2024

Keywords

Examples

			Triangle begins:
  n\k|  1   2   3   4   5   6 ...
  -------------------------------
   1 |  1;
   2 |  1;
   3 |  1,  2;
   4 |  1,  3;
   5 |  1;
   6 |  1,  2,  5;
   7 |  1,  4;
   8 |  1,  3,  7;
   9 |  1,  2;
  10 |  1;
  11 |  1;
  12 |  1,  2,  3,  5,  6, 11;
  13 |  1,  9;
  14 |  1,  4, 13;
  15 |  1,  2,  8;
  16 |  1,  3,  7;
  17 |  1;
  18 |  1,  2,  5, 10, 17;
  19 |  1;
  20 |  1,  3, 19;
  ...
		

Crossrefs

Cf. A074754 (row lengths), A319068 (right border), A378913 (row sums).
Cf. A000203.

Programs

  • Mathematica
    With[{nmax = 50}, Table[PositionIndex[Divisible[n, #[[;; n]]]][True], {n, nmax}] & [DivisorSigma[1, Range[nmax]]]]
  • PARI
    row(n) = select(x->(!(n % sigma(x))), [1..n]); \\ Michel Marcus, Dec 11 2024

Formula

T(n,k) <= n (see A319068).

A375228 a(n) is the largest number k such that usigma(k) divides n where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 1, 7, 8, 9, 1, 11, 1, 13, 4, 7, 16, 17, 1, 19, 2, 1, 1, 23, 4, 25, 8, 27, 1, 29, 1, 31, 32, 16, 4, 24, 1, 37, 2, 28, 1, 41, 1, 43, 8, 1, 1, 47, 1, 49, 16, 25, 1, 53, 4, 39, 2, 1, 1, 59, 1, 61, 8, 31, 64, 32, 1, 67, 2, 52, 1, 71, 1, 73, 4, 37
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2024

Keywords

Crossrefs

The unitary analog of A319068.
Cf. A034448.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{k = n}, While[!Divisible[n, usigma[k]], k--]; k]; Array[a, 100]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    a(n) = {my(k = n); while((n % usigma(k)), k--); k;}
Showing 1-3 of 3 results.