A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).
1, -1, 3, -2, -9, 15, -4, -18, -25, 55, -8, -36, -50, -121, 231, -16, -72, -100, -242, -441, 903, -32, -144, -200, -484, -882, -1849, 3655, -64, -288, -400, -968, -1764, -3698, -7225, 14535, -128, -576, -800, -1936, -3528, -7396, -14450, -29241, 58311, -256, -1152, -1600, -3872, -7056, -14792, -28900, -58482, -116281, 232903
Offset: 1
Examples
Triangle T(n, k) for 1 <= k <= n starts: n\k : 1 2 3 4 5 6 7 8 9 =================================================================== 1 : 1 2 : -1 3 3 : -2 -9 15 4 : -4 -18 -25 55 5 : -8 -36 -50 -121 231 6 : -16 -72 -100 -242 -441 903 7 : -32 -144 -200 -484 -882 -1849 3655 8 : -64 -288 -400 -968 -1764 -3698 -7225 14535 9 : -128 -576 -800 -1936 -3528 -7396 -14450 -29241 58311 etc.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
-
PARI
T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)
Formula
T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
Comments