cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).

Original entry on oeis.org

1, -1, 3, -2, -9, 15, -4, -18, -25, 55, -8, -36, -50, -121, 231, -16, -72, -100, -242, -441, 903, -32, -144, -200, -484, -882, -1849, 3655, -64, -288, -400, -968, -1764, -3698, -7225, 14535, -128, -576, -800, -1936, -3528, -7396, -14450, -29241, 58311, -256, -1152, -1600, -3872, -7056, -14792, -28900, -58482, -116281, 232903
Offset: 1

Views

Author

Werner Schulte, Dec 11 2024

Keywords

Comments

Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
1/1
1/3 1/3
1/3 1/5 1/15
1/3 1/5 1/33 1/55
1/3 1/5 1/33 1/105 1/231
1/3 1/5 1/33 1/105 1/473 1/903
etc.
Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\k :     1     2     3      4      5      6       7       8      9
===================================================================
  1 :     1
  2 :    -1     3
  3 :    -2    -9    15
  4 :    -4   -18   -25     55
  5 :    -8   -36   -50   -121    231
  6 :   -16   -72  -100   -242   -441    903
  7 :   -32  -144  -200   -484   -882  -1849    3655
  8 :   -64  -288  -400   -968  -1764  -3698   -7225   14535
  9 :  -128  -576  -800  -1936  -3528  -7396  -14450  -29241  58311
  etc.
		

Crossrefs

A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums).

Programs

  • Mathematica
    T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
  • PARI
    T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)

Formula

T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).