cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378980 Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 25, 26, 28, 33, 46, 55, 57, 69, 91, 93, 496, 1034, 1054, 1558, 2211, 2626, 4825, 8128, 11222, 12046, 12639, 28225, 32043, 68727, 89575, 970225, 1392386, 2245557, 8550146, 12371554, 16322559, 22799825, 33550336, 48980427, 51326726, 55037217, 60406599, 68258725, 142901438, 325422273, 342534446
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2024

Keywords

Comments

Numbers k such that A252748(k) divides A286385(k).
Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.

Crossrefs

Positions of 0's in A378981.
Subsequence of A263837.
Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).
Cf. also A378983.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* Amiram Eldar, Dec 19 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };
    isA378980(n) = !A378981(n);

A379216 Difference 2*k - A003961(k) computed for k for which this difference divides difference (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 1, 1, -1, -3, 3, -1, 1, 1, -43, 1, 5, 19, -1, -7, -5, 1, -2005, 1, -1, 149, -193, -1, -3, -79243, 1243, 1253, -7, 51, 581, -1, 3093, 1, 155491, 919, 1, -1, 15833, -877, -4295498497, 5129369, 31, 5779339, -69187, -29, 6745, 1, 181, 1, 69197, -397, -117433, -101, -1, 1, 2759, 1, -29479, 1, -5626288431709, 29669, -1, -132239, -1, -1, 14591, -2267959, -3187, 787250461
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2024

Keywords

Comments

Among the initial 69 terms, there are eleven +1's and eleven -1's. The former correspond in A378980 with those of its terms that are in A048674 (1, 2, 3, 25, 26, 33, 93, 1034, ...), while the latter here correspond in A378980 with those of its terms that are in A348514 (4, 10, 57, 1054, 2626, ...).

Crossrefs

Programs

Formula

a(n) = -A252748(A378980(n)).

A379217 Quotient (A003961(k)-sigma(k)) / (2*k-A003961(k)) computed for those k for which this quotient is an integer, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

0, 0, 1, -2, -1, 1, -3, 18, 9, -1, 17, 3, 1, -35, -7, -15, 57, -1, 339, -381, 3, -7, -969, -1213, -1, 3, 3, -979, 419, 29, -42735, 21, 731232, 3, 1445, 2809731, -4566981, 557, -19691, -1, 5, 544371, 5, -475, -1784691, 9051, 176870849, 808683, 280791301, 1803, -891775, -3679, -3733533, -444406677, 731480523, 275091
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2024

Keywords

Comments

Terms in A378980 that correspond here with -1's are perfect numbers (A000396).

Crossrefs

Programs

Formula

a(n) = A286385(A378980(n)) / A379216(n) = A286385(A378980(n)) / -A252748(A378980(n)).

A378982 a(n) = (A003961(n)-(1+sigma(n))) mod (A003961(n)-2*n), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 2, 0, 4, 0, 0, 16, 2, 3, 0, 0, 0, 35, 2, 20, 9, 2, 4, 74, 0, 0, 13, 42, 0, 32, 4, 0, 0, 2, 0, 133, 2, 1, 0, 98, 0, 68, 2, 3, 11, 4, 4, 280, 17, 6, 1, 5, 4, 254, 18, 176, 0, 2, 0, 146, 4, 1, 21, 0, 1, 50, 2, 9, 6, 86, 0, 479, 4, 8, 25, 11, 2, 86, 2, 380, 40, 2, 4, 270, 24, 8, 15, 170, 6, 290, 4, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2024

Keywords

Crossrefs

Cf. A000203, A003961, A252748, A286385, A378983 (positions of 0's).
Cf. also A378981.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378982(n) = ((A003961(n)-(sigma(n)+1))%((2*n)-A003961(n)));

Formula

a(n) = (A286385(n)-1) mod A252748(n).
Showing 1-4 of 4 results.