cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048674 Fixed points of A048673 and A064216: Numbers n such that if n = product_{k >= 1} (p_k)^(c_k), then Product_{k >= 1} (p_{k+1})^(c_k) = (2*n)-1, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 25, 26, 33, 93, 1034, 970225, 8550146, 325422273, 414690595, 1864797542, 2438037206
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Equally: after 1, numbers n such that, if the prime factorization of 2n-1 = Product_{k >= 1} (p_k)^(c_k) then Product_{k >= 1} (p_{k-1})^(c_k) = n.
Factorization of the initial terms: 1, 2, 3, 5^2, 2*13, 3*11, 3*31, 2*11*47, 5^2*197^2, 2*11*47*8269, 3*11*797*12373, 5*11^2*433*1583, 2*23*59*101*6803, 2*11*53*1201*1741.
The only 3-cycle of permutation A048673 in range 1 .. 402653184 is (2821 3460 5639).
For 2-cycles, take setwise difference of A245449 and this sequence.
Numbers k for which A336853(k) = k-1. - Antti Karttunen, Nov 26 2021

Examples

			25 is present, as 2*25 - 1 = 49 = p_4^2, and p_3^2 = 5*5 = 25.
26 is present, as 2*26 - 1 = 51 = 3*17 = p_2 * p_8, and p_1 * p_7 = 2*13 = 26.
Alternatively, as 26 = 2*13 = p_1 * p_7, and ((p_2 * p_8)+1)/2 = ((3*17)+1)/2 = 26 also, thus 26 is present.
		

Crossrefs

Fixed points of permutation pair A048673/A064216.
Positions of zeros in A349573.
Subsequence of the following sequences: A245449, A269860, A319630, A349622, A378980 (see also A379216).
This sequence is also obtained as a setwise difference of the following pairs of sequences: A246281 \ A246351, A246352 \ A246282, A246361 \ A246371, A246372 \ A246362.
Cf. also A348514 (fixed points of map A108228, similar to A048673).

Programs

  • Maple
    A048673 := n -> (A003961(n)+1)/2;
    A048674list := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if(A048673(i) = i) then b := [ op(b), i ]; fi; od: RETURN(b); end;
  • Mathematica
    Join[{1}, Reap[For[n = 1, n < 10^7, n++, ff = FactorInteger[n]; If[Times @@ Power @@@ (NextPrime[ff[[All, 1]]]^ff[[All, 2]]) == 2 n - 1, Print[n]; Sow[n]]]][[2, 1]]] (* Jean-François Alcover, Mar 04 2016 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA048674(n) = ((n+n)==(1+A003961(n))); \\ Antti Karttunen, Nov 26 2021

Extensions

Entry revised and the names in Maple-code cleaned by Antti Karttunen, Aug 25 2014
Terms a(11) - a(14) added by Antti Karttunen, Sep 11-13 2014

A348514 Numbers k for which A003961(k) = 2k+1, where A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

4, 10, 57, 1054, 2626, 68727, 12371554, 1673018314, 10475647197, 11154517557, 27594844918, 630178495917, 7239182861878
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

Numbers k such that A064216(1+k) = k.
It seems that after 4, all other terms are squarefree. See conjecture in A348511.
a(9)..a(13) <= 10475647197, 11154517557, 27594844918, 630178495917, 7239182861878, which are also terms. - David A. Corneth, Oct 30 2021

Crossrefs

Fixed points of map A108228. (Compare to A048674).
Positions of ones in A252748.
Subsequence of the following sequences: A246282, A319630, A348511, A378980 (see also A379216), A387411, A387414.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], s[#] == 2*# + 1 &] (* Amiram Eldar, Oct 30 2021 *)

Extensions

a(9)-a(11) verified by Amiram Eldar, Nov 01 2021
a(12)-a(13) verified by Martin Ehrenstein, Nov 08 2021

A326134 Numbers k such that A326057(k) is equal to A252748(k) and A252748(k) is not 1.

Original entry on oeis.org

6, 28, 69, 91, 496, 2211, 4825, 8128, 12639, 22799825, 33550336, 60406599, 68258725, 569173299, 794579511, 984210266, 2830283326, 8589869056, 10759889913, 80295059913, 85871289682
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2019

Keywords

Comments

No other terms below 3221225472.
Numbers k such that A252748(k) [= A003961(k) - 2*k] <> 1 (i.e., k is not in A348514), and A286385(k) [= A003961(k) - A000203(k)] = m*A252748(k) for some positive integer m. Note that this entails that k is nonabundant (A000203(k) <= 2*k) and primeshift-abundant (A252748(k) > 2), thus this is a subsequence of A341614. - revised Dec 13 2024
This is a subsequence of A378980, see further comments there. - Antti Karttunen, Dec 13 2024

Examples

			28 is a term as A252748(28) = 43 > 1 and A286385(28) = 43, which is a multiple of 43.
69 is a term as A252748(69) = 7 > 1 and A286385(69) = 49 is a multiple of 7.
91 is a term as A252748(91) = 5 > 1 and A286385(91) = 75 is a multiple of 5.
		

Crossrefs

Subsequence of the following sequences: A246282, A341614, A378980.
Odd terms form a subsequence of A349753.

Programs

  • Mathematica
    Select[Range[10^5], And[#3 - #1 != 1, GCD[#3 - #1, #3 - #2] == #3 - #1] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    isA326134(n) = { my(s = A003961(n), t = (s-(2*n)), u = s-sigma(n)); ((1!=t)&&!(u%t)&&((u/t)>0)); };

Extensions

a(18) from Antti Karttunen, Dec 14 2024
a(19)..a(21) from Antti Karttunen (from the b-file of A378980 computed by Amiram Eldar), Dec 20 2024

A379217 Quotient (A003961(k)-sigma(k)) / (2*k-A003961(k)) computed for those k for which this quotient is an integer, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

0, 0, 1, -2, -1, 1, -3, 18, 9, -1, 17, 3, 1, -35, -7, -15, 57, -1, 339, -381, 3, -7, -969, -1213, -1, 3, 3, -979, 419, 29, -42735, 21, 731232, 3, 1445, 2809731, -4566981, 557, -19691, -1, 5, 544371, 5, -475, -1784691, 9051, 176870849, 808683, 280791301, 1803, -891775, -3679, -3733533, -444406677, 731480523, 275091
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2024

Keywords

Comments

Terms in A378980 that correspond here with -1's are perfect numbers (A000396).

Crossrefs

Programs

Formula

a(n) = A286385(A378980(n)) / A379216(n) = A286385(A378980(n)) / -A252748(A378980(n)).
Showing 1-4 of 4 results.