cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A048673 Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Inverse of sequence A064216 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
From Antti Karttunen, Dec 20 2014: (Start)
Permutation of natural numbers obtained by replacing each prime divisor of n with the next prime and mapping the generated odd numbers back to all natural numbers by adding one and then halving.
Note: there is a 7-cycle almost right in the beginning: (6 8 14 17 10 11 7). (See also comments at A249821. This 7-cycle is endlessly copied in permutations like A250249/A250250.)
The only 3-cycle in range 1 .. 402653184 is (2821 3460 5639).
For 1- and 2-cycles, see A245449.
(End)
The first 5-cycle is (1410, 2783, 2451, 2703, 2803). - Robert Israel, Jan 15 2015
From Michel Marcus, Aug 09 2020: (Start)
(5194, 5356, 6149, 8186, 10709), (46048, 51339, 87915, 102673, 137205) and (175811, 200924, 226175, 246397, 267838) are other 5-cycles.
(10242, 20479, 21413, 29245, 30275, 40354, 48241) is another 7-cycle. (End)
From Antti Karttunen, Feb 10 2021: (Start)
Somewhat artificially, also this permutation can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by 3 and subtracting one, while each child to the right is obtained by applying A253888 to the parent:
1
|
................../ \..................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 13 11 7 23 9 17 18
41 10 38 12 32 28 20 15 68 25 26 63 50 16 53 19
etc.
Each node's (> 1) parent can be obtained with A253889. Sequences A292243, A292244, A292245 and A292246 are constructed from the residues (mod 3) of the vertices encountered on the path from n to the root (1).
(End)

Examples

			For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
		

Crossrefs

Inverse: A064216.
Row 1 of A251722, Row 2 of A249822.
One more than A108228, half the terms of A243501.
Fixed points: A048674.
Positions of records: A029744, their values: A246360 (= A007051 interleaved with A057198).
Positions of subrecords: A247283, their values: A247284.
Cf. A246351 (Numbers n such that a(n) < n.)
Cf. A246352 (Numbers n such that a(n) >= n.)
Cf. A246281 (Numbers n such that a(n) <= n.)
Cf. A246282 (Numbers n such that a(n) > n.), A252742 (their char. function)
Cf. A246261 (Numbers n for which a(n) is odd.)
Cf. A246263 (Numbers n for which a(n) is even.)
Cf. A246260 (a(n) reduced modulo 2), A341345 (modulo 3), A341346, A292251 (3-adic valuation), A292252.
Cf. A246342 (Iterates starting from n=12.)
Cf. A246344 (Iterates starting from n=16.)
Cf. A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence: A122111, A243062, A243066, A243500, A243506, A244154, A244319, A245605, A245608, A245610, A245612, A245708, A246265, A246267, A246268, A246363, A249745, A249824, A249826, and also A183209, A254103 that are somewhat similar.
Cf. also prime-shift based binary trees A005940, A163511, A245612 and A244154.
Cf. A253888, A253889, A292243, A292244, A292245 and A292246 for other derived sequences.
Cf. A323893 (Dirichlet inverse), A323894 (sum with it), A336840 (inverse Möbius transform).

Programs

  • Haskell
    a048673 = (`div` 2) . (+ 1) . a045965
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Maple
    f:= proc(n)
    local F,q,t;
      F:= ifactors(n)[2];
      (1 + mul(nextprime(t[1])^t[2], t = F))/2
    end proc:
    seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
    
  • PARI
    A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
    
  • Python
    from sympy import factorint, nextprime, prod
    def a(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
    

Formula

From Antti Karttunen, Dec 20 2014: (Start)
a(1) = 1; for n>1: If n = product_{k>=1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k>=1} (p_{k+1})^(c_k)).
a(n) = (A003961(n)+1) / 2.
a(n) = floor((A045965(n)+1)/2).
Other identities. For all n >= 1:
a(n) = A108228(n)+1.
a(n) = A243501(n)/2.
A108951(n) = A181812(a(n)).
a(A246263(A246268(n))) = 2*n.
As a composition of other permutations involving prime-shift operations:
a(n) = A243506(A122111(n)).
a(n) = A243066(A241909(n)).
a(n) = A241909(A243062(n)).
a(n) = A244154(A156552(n)).
a(n) = A245610(A244319(n)).
a(n) = A227413(A246363(n)).
a(n) = A245612(A243071(n)).
a(n) = A245608(A245605(n)).
a(n) = A245610(A244319(n)).
a(n) = A249745(A249824(n)).
For n >= 2, a(n) = A245708(1+A245605(n-1)).
(End)
From Antti Karttunen, Jan 17 2015: (Start)
We also have the following identities:
a(2n) = 3*a(n) - 1. [Thus a(2n+1) = 0 or 1 when reduced modulo 3. See A341346]
a(3n) = 5*a(n) - 2.
a(4n) = 9*a(n) - 4.
a(5n) = 7*a(n) - 3.
a(6n) = 15*a(n) - 7.
a(7n) = 11*a(n) - 5.
a(8n) = 27*a(n) - 13.
a(9n) = 25*a(n) - 12.
and in general:
a(x*y) = (A003961(x) * a(y)) - a(x) + 1, for all x, y >= 1.
(End)
From Antti Karttunen, Feb 10 2021: (Start)
For n > 1, a(2n) = A016789(a(n)-1), a(2n+1) = A253888(a(n)).
a(2^n) = A007051(n) for all n >= 0. [A property shared with A183209 and A254103].
(End)
a(n) = A003602(A003961(n)). - Antti Karttunen, Apr 20 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/4) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 1.0319981... , where nextprime is A151800. - Amiram Eldar, Jan 18 2023

Extensions

New name and crossrefs to derived sequences added by Antti Karttunen, Dec 20 2014

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A246282 Numbers k for which A003961(k) > 2*k; numbers n such that if n = Product_{k >= 1} (p_k)^(c_k), then Product_{k >= 1} (p_{k+1})^(c_k) > 2*n, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A003961(n) > 2*n.
Numbers n such that A048673(n) > n.
The sequence grows as:
a(10) = 18
a(100) = 192
a(1000) = 1830
a(10000) = 18636
a(100000) = 187350
a(1000000) = 1865226
a(10000000) = 18654333
and the powers of 10 occur at:
a(5) = 10
a(53) = 100
a(536) = 1000
a(5423) = 10000
a(53290) = 100000
a(535797) = 1000000
a(5361886) = 10000000
suggesting that the ratio a(n)/n is converging to an constant and an arbitrary natural number is slightly more likely to be in this sequence than in the complement A246281. See also comments at A246351 and compare to quite a different ratio present in the "inverse" case A246362.
From Antti Karttunen, Aug 27 2020: (Start)
Any perfect number, including all odd perfect numbers (if such numbers exist), must occur in this sequence. See A286385 and A326042 for the reason why.
Like abundancy index (ratio A000203(n)/n), also ratio A003961(n)/n is multiplicative and always > 1 for all n > 1. Thus if the number has a proper divisor that is in this sequence, then the number itself also is. See A337372 for terms included here, but with no proper divisor in this sequence. (End)
For k >= 2, if m * A130789(k) is a term then m * A130789(k-1) is a term. - Peter Munn, Sep 01 2025
Could be called "primeshift-abundant numbers", in analogy with A005101. - Antti Karttunen, Sep 01 2025

Examples

			3 = p_2 (3 is the second prime, A000040(2)) is not a member, because p_3 = 5 (5 is the next prime after 3, A000040(3)) and 5/3 < 2.
4 = 2*2 = p_1 * p_1 is a member, as p_2 * p_2 = 3*3 = 9, and 9/4 > 2.
33 = 3*11 = p_2 * p_5 is not a member, as p_3 * p_6 = 5*13 = 65, and 65/33 < 2.
35 = 5*7 = p_3 * p_4 is a member, as p_4 * p_5 = 7*11 = 77, and 77/35 > 2.
		

Crossrefs

Complement: A246281.
Setwise difference of A246352 and A048674.
Cf. A000040, A003961, A048673, A130789, A246362, A252742 (characteristic function), A286385, A326042, A337345.
Positions of positive terms in A252748 and in A337345.
Union of A337372 (primitive terms), A341610 (non-primitive terms).
Cf. also A275717, A275718.

Programs

  • Mathematica
    Select[Range[144], 2 # < Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    isA246282(n) = (A003961(n) > (n+n));
    n = 0; i = 0; while(i < 10000, n++; if(isA246282(n), i++; write("b246282.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A003961 n) (* 2 n)))))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246282 (MATCHING-POS 1 1 (lambda (n) (> (A048673 n) n))))

Extensions

A new shorter version of name prepended by Antti Karttunen, Aug 27 2020

A246281 Numbers k for which A003961(k) < 2*k; Numbers n such that if n = product_{k >= 1} (p_k)^(c_k), then product_{k >= 1} (p_{k+1})^(c_k) < 2*n, where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 137, 139
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A003961(n) < 2*n.
Numbers n such that A048673(n) <= n.
All primes (A000040) are members. (Cf. Bertrand's postulate).
All terms are deficient (in A005100). See A286385. - Antti Karttunen, Aug 27 2020

Examples

			1 is present, as 1 = empty product and 1 < 2.
2 = p_1 is in the sequence, as p_2 = 3 and 3/2 < 2.
4 = p_1 * p_1 is not a member, as p_2 * p_2 = 3*3 = 9, and 9/4 > 2.
22 = 2*11 = p_1 * p_5 is a member, as p_2 * p_6 = 39, and 39/22 < 2.
		

Crossrefs

Complement: A246282.
Union of A246351 and A048674.
Subsequence: A000040.
Subsequence of A005100.
Positions of zeros in A252742, in A336836, and in A337345.
Positions of negative terms in A252748.

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f);
    isA246281(n) = (A003961(n) < (n+n));
    n = 0; i = 0; while(i < 10000, n++; if(isA246281(n), i++; write("b246281.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246281 (MATCHING-POS 1 1 (lambda (n) (<= (A048673 n) n))))

Extensions

A new shorter version of name prepended by Antti Karttunen, Aug 27 2020

A246371 Numbers n such that, if 2n-1 = Product_{k >= 1} (p_k)^(c_k) then n > Product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

5, 8, 11, 13, 14, 17, 18, 23, 28, 32, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233, 238, 239, 242, 248, 254, 257
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) < n.
Numbers n such that A064989(2n-1) < n.
Note: This sequence has remarkable but possibly merely coincidental overlap with A053726. On Dec 22 2014, Matthijs Coster mistakenly attached a comment intended for that sequence to this one. On Apr 17 2015, Antti Karttunen noted the error. I have moved the comment to the correct sequence, and have removed Karttunen's note. - Allan C. Wechsler, Aug 01 2022

Crossrefs

Complement: A246372.
Setwise difference of A246361 and A048674.
Subsequence of A104275 and A053726 (20 is the first term > 1 which is not in this sequence).
Subsequence: A246374 (the primes present in this sequence).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246371(n) = (A064216(n) < n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246371(n), i++; write("b246371.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246371 (MATCHING-POS 1 1 (lambda (n) (< (A064216 n) n))))

A378980 Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 25, 26, 28, 33, 46, 55, 57, 69, 91, 93, 496, 1034, 1054, 1558, 2211, 2626, 4825, 8128, 11222, 12046, 12639, 28225, 32043, 68727, 89575, 970225, 1392386, 2245557, 8550146, 12371554, 16322559, 22799825, 33550336, 48980427, 51326726, 55037217, 60406599, 68258725, 142901438, 325422273, 342534446
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2024

Keywords

Comments

Numbers k such that A252748(k) divides A286385(k).
Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.

Crossrefs

Positions of 0's in A378981.
Subsequence of A263837.
Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).
Cf. also A378983.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* Amiram Eldar, Dec 19 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };
    isA378980(n) = !A378981(n);

A246351 Numbers k such that A048673(k) < k.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 22, 23, 29, 31, 34, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 137, 139, 141, 142, 143, 145, 146, 149, 151, 155, 157, 158, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

The growth rate of the sequence seems to converge:
a(100) = 217
a(1000) = 2231
a(10000) = 21535
a(100000) = 214647
a(1000000) = 2155903
a(10000000) = 21553153
Please see comments in A246282.

Crossrefs

Complement: A246352.
Setwise difference of A246281 and A048674.

Programs

  • PARI
    default(primelimit, 2^22);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    isA246351(n) = (A048673(n) < n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246351(n), i++; write("b246351.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246351 (MATCHING-POS 1 1 (lambda (n) (< (A048673 n) n))))

A246361 Numbers n such that if 2n-1 = product_{k >= 1} (p_k)^(c_k), then n >= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 13, 14, 17, 18, 23, 25, 26, 28, 32, 33, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 93, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) <= n.
Numbers n such that A064989(2n-1) <= n.
The sequence grows as:
a(100) = 332
a(1000) = 3207
a(10000) = 34213
a(100000) = 340703
a(1000000) = 3388490
suggesting that overall, less than one third of natural numbers appear in this sequence, and more than two thirds in the complement, A246362. See also comments in the latter.

Examples

			1 is present, as 2*1 - 1 = empty product = 1.
12 is not present, as (2*12)-1 = 23 = p_9, and p_8 = 19, with 12 < 19.
14 is present, as (2*14)-1 = 27 = p_2^3 = 8, and 14 >= 8.
		

Crossrefs

Complement: A246362.
Union of A246371 and A048674.
Subsequence: A246360.

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246361(n) = (A064216(n) <= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246361(n), i++; write("b246361.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246361 (MATCHING-POS 1 1 (lambda (n) (<= (A064216 n) n))))

A246372 Numbers n such that 2n-1 = product_{k >= 1} (p_k)^(c_k), then n <= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) >= n.
Numbers n such that A064989(2n-1) >= n.

Examples

			1 is present, as 2*1 - 1 = empty product = 1.
2 is present, as 2*2 - 1 = 3 = p_2, and p_{2-1} = p_1 = 2 >= 2.
3 is present, as 2*3 - 1 = 5 = p_3, and p_{3-1} = p_2 = 3 >= 3.
5 is not present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, with 4 < 5.
6 is present, as 2*6 - 1 = 11 = p_5, and p_{5-1} = p_4 = 7 >= 6.
25 is present, as 2*25 - 1 = 49 = p_4^2, and p_3^2 = 5*5 = 25 >= 25.
35 is present, as 2*35 - 1 = 69 = 3*23 = p_2 * p_9, and p_1 * p_8 = 2*19 = 38 >= 35.
		

Crossrefs

Complement: A246371
Union of A246362 and A048674.
Subsequences: A006254 (A111333), A246373 (the primes present in this sequence).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246372(n) = (A064216(n) >= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246372(n), i++; write("b246372.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246372 (MATCHING-POS 1 1 (lambda (n) (>= (A064216 n) n))))

A246352 Numbers n such that A048673(n) >= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 93, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Crossrefs

Complement: A246351
Union of A246282 and A048674.
Subsequence: A029744 (gives the positions of records in A048673).
Cf. A246372.

Programs

  • PARI
    default(primelimit, 2^22);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    isA246352(n) = (A048673(n) >= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246352(n), i++; write("b246352.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246352 (MATCHING-POS 1 1 (lambda (n) (>= (A048673 n) n))))
Showing 1-10 of 24 results. Next