A048674 Fixed points of A048673 and A064216: Numbers n such that if n = product_{k >= 1} (p_k)^(c_k), then Product_{k >= 1} (p_{k+1})^(c_k) = (2*n)-1, where p_k indicates the k-th prime, A000040(k).
1, 2, 3, 25, 26, 33, 93, 1034, 970225, 8550146, 325422273, 414690595, 1864797542, 2438037206
Offset: 1
Examples
25 is present, as 2*25 - 1 = 49 = p_4^2, and p_3^2 = 5*5 = 25. 26 is present, as 2*26 - 1 = 51 = 3*17 = p_2 * p_8, and p_1 * p_7 = 2*13 = 26. Alternatively, as 26 = 2*13 = p_1 * p_7, and ((p_2 * p_8)+1)/2 = ((3*17)+1)/2 = 26 also, thus 26 is present.
Crossrefs
Positions of zeros in A349573.
Subsequence of the following sequences: A245449, A269860, A319630, A349622, A378980 (see also A379216).
Programs
-
Maple
A048673 := n -> (A003961(n)+1)/2; A048674list := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if(A048673(i) = i) then b := [ op(b), i ]; fi; od: RETURN(b); end;
-
Mathematica
Join[{1}, Reap[For[n = 1, n < 10^7, n++, ff = FactorInteger[n]; If[Times @@ Power @@@ (NextPrime[ff[[All, 1]]]^ff[[All, 2]]) == 2 n - 1, Print[n]; Sow[n]]]][[2, 1]]] (* Jean-François Alcover, Mar 04 2016 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; isA048674(n) = ((n+n)==(1+A003961(n))); \\ Antti Karttunen, Nov 26 2021
Extensions
Entry revised and the names in Maple-code cleaned by Antti Karttunen, Aug 25 2014
Terms a(11) - a(14) added by Antti Karttunen, Sep 11-13 2014
Comments