cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A245612 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = 3*a(n)-1, a(2n+1) = A254049(a(n)); composition of A048673 and A163511.

Original entry on oeis.org

1, 2, 5, 3, 14, 13, 8, 4, 41, 63, 38, 25, 23, 18, 11, 6, 122, 313, 188, 172, 113, 123, 74, 61, 68, 88, 53, 39, 32, 28, 17, 7, 365, 1563, 938, 1201, 563, 858, 515, 666, 338, 613, 368, 424, 221, 303, 182, 85, 203, 438, 263, 270, 158, 193, 116, 72, 95, 138, 83, 46, 50, 33, 20, 9
Offset: 0

Views

Author

Antti Karttunen, Jul 28 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
From Antti Karttunen, Jul 25 2016: (Start)
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A016789(n-1) when the parent contains n (i.e., multiply by 3, subtract one), and each right hand child is obtained by applying A254049 to the parent's contents:
1
|
...................2...................
5 3
14......../ \........13 8......../ \........4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
41 63 38 25 23 18 11 6
122 313 188 172 113 123 74 61 68 88 53 39 32 28 17 7
etc.
(End)

Crossrefs

Programs

  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ If[n == 0, 1, Prime[#] Product[Prime[m]^(Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]][[-m]]), {m, #}] &[DigitCount[n, 2, 1]]], {n, 0, 63}] (* Michael De Vlieger, Jul 25 2016 *)
  • Scheme
    (define (A245612 n) (A048673 (A163511 n))) ;; offset 0, a(0) = 1.

Formula

a(n) = A048673(A163511(n)).
a(0) = 1, a(1) = 2, a(2n) = 3*a(n)-1, a(2n+1) = A254049(a(n)). - Antti Karttunen, Jul 25 2016

A244154 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1; composition of A048673 and A005940.

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 13, 14, 6, 11, 18, 23, 25, 38, 63, 41, 7, 17, 28, 32, 39, 53, 88, 68, 61, 74, 123, 113, 172, 188, 313, 122, 9, 20, 33, 50, 46, 83, 138, 95, 72, 116, 193, 158, 270, 263, 438, 203, 85, 182, 303, 221, 424, 368, 613, 338, 666, 515, 858, 563, 1201, 938, 1563, 365, 10, 26, 43, 59, 60
Offset: 0

Views

Author

Antti Karttunen, Jun 27 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
From Antti Karttunen, May 30 2017: (Start)
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A254049(n) when the parent contains n, and each right hand child is obtained by applying A016789(n-1) (i.e., multiply by 3, subtract one) to the parent's contents:
1
|
...................2...................
3 5
4......../ \........8 13......../ \........14
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
6 11 18 23 25 38 63 41
7 17 28 32 39 53 88 68 61 74 123 113 172 188 313 122
etc.
This is a mirror image of the tree depicted in A245612.
(End)

Crossrefs

Programs

Formula

a(n) = A048673(A005940(n+1)).
From Antti Karttunen, May 30 2017: (Start)
a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1.
a(n) = A245612(A054429(n)).
(End)

A243066 Permutation of natural numbers, the even bisection of A241909 incremented by one and halved; equally, a composition of A241909 and A048673: a(n) = A048673(A241909(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 13, 41, 4, 8, 63, 122, 25, 365, 313, 38, 6, 1094, 18, 3281, 172, 188, 1563, 9842, 61, 23, 7813, 11, 1201, 29525, 123, 88574, 7, 938, 39063, 113, 39, 265721, 195313, 4688, 666, 797162, 858, 2391485, 8404, 74, 976563, 7174454, 85, 68, 88, 23438, 58825, 21523361, 28
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2014

Keywords

Comments

For n > 1, 2n is found in A241909 from the position (2*a(n))-1. I.e., A241909((2*a(n))-1) = 2n for all n >= 2.
Or in other words, a(n) gives the position in the odd bisection of A241909 where 2n is located at.
Are there any other fixed points than 1, 2, 18 and 72?

Crossrefs

Formula

a(1) = 1, a(n) = (A241909(2*n)+1)/2.
As a composition of related permutations:
a(n) = A048673(A241909(n)).
a(n) = A241909(A243062(A241909(n))).
For all n>=1, a(2^n) = A006254(n).

A245611 Permutation of natural numbers: a(n) = A243071(A064216(n)).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 31, 6, 63, 127, 14, 255, 5, 4, 511, 1023, 30, 13, 2047, 62, 4095, 8191, 12, 16383, 11, 126, 32767, 29, 254, 65535, 131071, 28, 61, 262143, 510, 524287, 1048575, 10, 27, 2097151, 8, 4194303, 125, 1022, 8388607, 59, 2046, 253, 16777215, 60, 33554431, 67108863, 26
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
The odd bisection of A243071 decremented by one and halved. (For a(1) = 0, take ceiling of -1/2).

Crossrefs

Programs

Formula

a(1) = 0, and for n > 1, a(n) = (1/2) * (A243071((2*n)-1) - 1).
As a composition of related permutations:
a(n) = A243071(A064216(n)).
a(n) = A054429(A244153(n)).

A243505 Permutation of natural numbers, take the odd bisection of A122111 and divide the largest prime factor out: a(n) = A052126(A122111(2n-1)).

Original entry on oeis.org

1, 2, 4, 8, 3, 16, 32, 6, 64, 128, 12, 256, 9, 5, 512, 1024, 24, 18, 2048, 48, 4096, 8192, 10, 16384, 27, 96, 32768, 36, 192, 65536, 131072, 20, 72, 262144, 384, 524288, 1048576, 15, 54, 2097152, 7, 4194304, 144, 768, 8388608, 108, 1536, 288, 16777216, 40, 33554432, 67108864, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A052126(A122111((2*n)-1)).
a(n) = A122111((2*n)-1) / A105560((2*n)-1).
As a composition of related permutations:
a(n) = A122111(A064216(n)).
a(n) = A241916(A243065(n)).
Other identities:
For all n >= 2, a(n) = A070003(A244984(n)-1) / A105560((2*n)-1).
For all n >= 1, a(A006254(n)) = A000079(n) and a(A007051(n)) = A000040(n).
For all n >= 1, A105560(2n-1) divides a(n).

A244153 Permutation of natural numbers, the odd bisection of A156552 halved; equally, a composition of A064216 and A156552: a(n) = A156552(A064216(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 16, 5, 32, 64, 9, 128, 6, 7, 256, 512, 17, 10, 1024, 33, 2048, 4096, 11, 8192, 12, 65, 16384, 18, 129, 32768, 65536, 19, 34, 131072, 257, 262144, 524288, 13, 20, 1048576, 15, 2097152, 66, 513, 4194304, 36, 1025, 130, 8388608, 35, 16777216, 33554432, 21, 67108864, 134217728, 2049, 268435456, 258, 67, 68, 24, 4097, 14
Offset: 1

Views

Author

Antti Karttunen, Jun 27 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Programs

Formula

a(n) = A156552(2n+1) / 2.
As a composition of related permutations:
a(n) = A156552(A064216(n)).
a(n) = A054429(A245611(n)).

A243506 Permutation of natural numbers: a(n) = A048673(A122111(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 8, 41, 4, 13, 23, 122, 11, 365, 68, 38, 6, 1094, 18, 3281, 32, 113, 203, 9842, 17, 63, 608, 25, 95, 29525, 53, 88574, 7, 338, 1823, 188, 28, 265721, 5468, 1013, 50, 797162, 158, 2391485, 284, 74, 16403, 7174454, 20, 313, 88, 3038, 851, 21523361, 39, 563, 149, 9113, 49208, 64570082, 83, 193710245, 147623, 221, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2014

Keywords

Crossrefs

Inverse: A243505.
Related or similar permutations: A048673, A122111, A243065-A243066, A244981-A244982, A244983-A244984, A244153-A244154.

Programs

Formula

a(n) = A048673(A122111(n)).
a(n) = A243066(A241916(n)).
For all n >= 1, a(A000040(n)) = A007051(n) and a(A000079(n)) = A006254(n).

A245607 Permutation of natural numbers, the even bisection of A245605 halved: a(n) = A245605(2*n)/2.

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 13, 6, 17, 37, 8, 25, 7, 10, 69, 33, 26, 11, 41, 16, 277, 45, 18, 65, 21, 14, 1109, 15, 52, 73, 57, 74, 35, 209, 82, 293, 141, 34, 53, 329, 12, 1173, 31, 36, 213, 149, 104, 43, 49, 20, 145, 173, 138, 81, 581, 114, 553, 71, 90, 133, 101, 282, 19, 325, 24, 457, 165, 50, 77, 97, 62, 105, 555, 42
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A245605(2*n)/2.
As a composition of related permutations:
a(n) = A245605(A064216(n)).
a(n) = A245705(A245707(n)).
Showing 1-10 of 17 results. Next