cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A253883 Permutation of natural numbers: a(n) = A243505(A122111(n)).

Original entry on oeis.org

1, 2, 8, 4, 6, 16, 1024, 3, 64, 256, 20, 128, 1073741824, 16384, 18, 32, 240, 512, 3538944, 48, 524288, 288, 8640, 5, 32768, 4398046511104, 27, 2097152, 214990848, 65536, 660, 12, 162, 37778931862957161709568, 134217728, 4096
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2015

Keywords

Comments

Term a(37) has 310 decimal digits and its binary representation is 1028 bits long.

Crossrefs

Inverse: A253884.
Similar permutations: A253791, A253891, A122111, A243505.
Cf. also A253890.

Programs

Formula

a(n) = A243505(A122111(n)).

A285334 a(n) = A046523(A243505(n)).

Original entry on oeis.org

1, 2, 4, 8, 2, 16, 32, 6, 64, 128, 12, 256, 4, 2, 512, 1024, 24, 12, 2048, 48, 4096, 8192, 6, 16384, 8, 96, 32768, 36, 192, 65536, 131072, 12, 72, 262144, 384, 524288, 1048576, 6, 24, 2097152, 2, 4194304, 144, 768, 8388608, 72, 1536, 288, 16777216, 24, 33554432, 67108864, 30, 134217728, 268435456, 3072, 536870912, 576, 48, 216, 16, 6144, 4, 1073741824, 12288
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A243505(n)).
a(n) = A278221(A064216(n)).

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A245612 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = 3*a(n)-1, a(2n+1) = A254049(a(n)); composition of A048673 and A163511.

Original entry on oeis.org

1, 2, 5, 3, 14, 13, 8, 4, 41, 63, 38, 25, 23, 18, 11, 6, 122, 313, 188, 172, 113, 123, 74, 61, 68, 88, 53, 39, 32, 28, 17, 7, 365, 1563, 938, 1201, 563, 858, 515, 666, 338, 613, 368, 424, 221, 303, 182, 85, 203, 438, 263, 270, 158, 193, 116, 72, 95, 138, 83, 46, 50, 33, 20, 9
Offset: 0

Views

Author

Antti Karttunen, Jul 28 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
From Antti Karttunen, Jul 25 2016: (Start)
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A016789(n-1) when the parent contains n (i.e., multiply by 3, subtract one), and each right hand child is obtained by applying A254049 to the parent's contents:
1
|
...................2...................
5 3
14......../ \........13 8......../ \........4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
41 63 38 25 23 18 11 6
122 313 188 172 113 123 74 61 68 88 53 39 32 28 17 7
etc.
(End)

Crossrefs

Programs

  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ If[n == 0, 1, Prime[#] Product[Prime[m]^(Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]][[-m]]), {m, #}] &[DigitCount[n, 2, 1]]], {n, 0, 63}] (* Michael De Vlieger, Jul 25 2016 *)
  • Scheme
    (define (A245612 n) (A048673 (A163511 n))) ;; offset 0, a(0) = 1.

Formula

a(n) = A048673(A163511(n)).
a(0) = 1, a(1) = 2, a(2n) = 3*a(n)-1, a(2n+1) = A254049(a(n)). - Antti Karttunen, Jul 25 2016

A244154 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1; composition of A048673 and A005940.

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 13, 14, 6, 11, 18, 23, 25, 38, 63, 41, 7, 17, 28, 32, 39, 53, 88, 68, 61, 74, 123, 113, 172, 188, 313, 122, 9, 20, 33, 50, 46, 83, 138, 95, 72, 116, 193, 158, 270, 263, 438, 203, 85, 182, 303, 221, 424, 368, 613, 338, 666, 515, 858, 563, 1201, 938, 1563, 365, 10, 26, 43, 59, 60
Offset: 0

Views

Author

Antti Karttunen, Jun 27 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
From Antti Karttunen, May 30 2017: (Start)
This sequence can be represented as a binary tree. Each left hand child is obtained by applying A254049(n) when the parent contains n, and each right hand child is obtained by applying A016789(n-1) (i.e., multiply by 3, subtract one) to the parent's contents:
1
|
...................2...................
3 5
4......../ \........8 13......../ \........14
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
6 11 18 23 25 38 63 41
7 17 28 32 39 53 88 68 61 74 123 113 172 188 313 122
etc.
This is a mirror image of the tree depicted in A245612.
(End)

Crossrefs

Programs

Formula

a(n) = A048673(A005940(n+1)).
From Antti Karttunen, May 30 2017: (Start)
a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1.
a(n) = A245612(A054429(n)).
(End)

A243065 Permutation of natural numbers, the odd bisection of A241909 halved; equally, a composition of A064216 and A241909: a(n) = A241909(A064216(n)).

Original entry on oeis.org

1, 2, 4, 8, 3, 16, 32, 9, 64, 128, 27, 256, 6, 5, 512, 1024, 81, 18, 2048, 243, 4096, 8192, 25, 16384, 12, 729, 32768, 54, 2187, 65536, 131072, 125, 162, 262144, 6561, 524288, 1048576, 15, 36, 2097152, 7, 4194304, 486, 19683, 8388608, 108, 59049, 1458, 16777216, 625, 33554432, 67108864, 75
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2014

Keywords

Comments

Are there any other fixed points than 1, 2, 18 and 72?

Crossrefs

Programs

Formula

a(1) = 1, and for n>=2, a(n) = A241909(2n-1)/2. Equally, a(n) = ceiling(A241909(2n-1)/2) for all n.
As a composition of related permutations:
a(n) = A241909(A064216(n)).
a(n) = A241909(A243061(A241909(n))).
For all n, a(A006254(n)) = 2^n.

A243066 Permutation of natural numbers, the even bisection of A241909 incremented by one and halved; equally, a composition of A241909 and A048673: a(n) = A048673(A241909(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 13, 41, 4, 8, 63, 122, 25, 365, 313, 38, 6, 1094, 18, 3281, 172, 188, 1563, 9842, 61, 23, 7813, 11, 1201, 29525, 123, 88574, 7, 938, 39063, 113, 39, 265721, 195313, 4688, 666, 797162, 858, 2391485, 8404, 74, 976563, 7174454, 85, 68, 88, 23438, 58825, 21523361, 28
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2014

Keywords

Comments

For n > 1, 2n is found in A241909 from the position (2*a(n))-1. I.e., A241909((2*a(n))-1) = 2n for all n >= 2.
Or in other words, a(n) gives the position in the odd bisection of A241909 where 2n is located at.
Are there any other fixed points than 1, 2, 18 and 72?

Crossrefs

Formula

a(1) = 1, a(n) = (A241909(2*n)+1)/2.
As a composition of related permutations:
a(n) = A048673(A241909(n)).
a(n) = A241909(A243062(A241909(n))).
For all n>=1, a(2^n) = A006254(n).

A245611 Permutation of natural numbers: a(n) = A243071(A064216(n)).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 31, 6, 63, 127, 14, 255, 5, 4, 511, 1023, 30, 13, 2047, 62, 4095, 8191, 12, 16383, 11, 126, 32767, 29, 254, 65535, 131071, 28, 61, 262143, 510, 524287, 1048575, 10, 27, 2097151, 8, 4194303, 125, 1022, 8388607, 59, 2046, 253, 16777215, 60, 33554431, 67108863, 26
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
The odd bisection of A243071 decremented by one and halved. (For a(1) = 0, take ceiling of -1/2).

Crossrefs

Programs

Formula

a(1) = 0, and for n > 1, a(n) = (1/2) * (A243071((2*n)-1) - 1).
As a composition of related permutations:
a(n) = A243071(A064216(n)).
a(n) = A054429(A244153(n)).

A105560 a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 5, 3, 3, 2, 5, 2, 3, 3, 7, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 5, 5, 2, 5, 2, 11, 3, 3, 3, 7, 2, 3, 3, 7, 2, 5, 2, 5, 5, 3, 2, 11, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 13, 3, 5, 2, 5, 3, 5, 2, 11, 2, 3, 5, 5, 3, 5, 2, 11, 7, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 13, 2, 5, 5, 7
Offset: 1

Views

Author

Cino Hilliard, May 03 2005

Keywords

Comments

From Antti Karttunen, Jul 21 2014: (Start)
a(n) divides A122111(n), A242424(n), A243072(n), A243073(n) because a(n) divides all the terms in column n of A243070.
a(2n-1) divides A243505(n) and a(2n-1)^2 divides A122111(2n-1).
(End)

Crossrefs

Programs

  • Mathematica
    Table[Prime[Sum[FactorInteger[n][[i,2]],{i,1,Length[FactorInteger[n]]}]],{n,2,40}] (* Stefan Steinerberger, May 16 2007 *)
  • PARI
    d(n) = for(x=2,n,print1(prime(bigomega(x))","))
    
  • Python
    from sympy import prime, primefactors
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a(n): return 1 if n==1 else prime(a001222(n)) # Indranil Ghosh, Jun 15 2017

Formula

a(1) = 1, and for n >= 2, a(n) = A000040(A001222(n)).
From Antti Karttunen, Jul 21 2014: (Start)
a(n) = A008578(1 + A001222(n)).
a(n) = A006530(A122111(n)).
a(n) = A122111(n) / A122111(A064989(n)).
a(2n-1) = A122111(2n-1) / A243505(n).
a(n) = A242424(n) / A064989(n).
(End)

Extensions

a(1) = 1 prepended by Antti Karttunen, Jul 21 2014
Showing 1-10 of 16 results. Next