cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A245705 Permutation of natural numbers: a(n) = A245607(A245708(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 13, 10, 7, 12, 37, 18, 19, 16, 69, 26, 17, 20, 33, 14, 277, 24, 213, 74, 11, 36, 73, 38, 71, 32, 45, 138, 25, 52, 1109, 34, 457, 40, 173, 66, 43, 28, 549, 554, 3351, 48, 77, 426, 21, 148, 53, 22, 135, 72, 125, 146, 651, 76, 273, 142, 55, 64
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2014

Keywords

Comments

The even bisection halved gives the sequence back. The odd bisection incremented by one and halved gives A245711.

Crossrefs

Inverse: A245706.
Fixed points: A245709.

Programs

Formula

a(n) = A245607(A245708(n)).

A064989 Multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 10, 7, 19, 2, 9, 11, 8, 5, 23, 6, 29, 1, 14, 13, 15, 4, 31, 17, 22, 3, 37, 10, 41, 7, 12, 19, 43, 2, 25, 9, 26, 11, 47, 8, 21, 5, 34, 23, 53, 6, 59, 29, 20, 1, 33, 14, 61, 13, 38, 15, 67, 4, 71, 31, 18, 17, 35, 22, 73, 3, 16
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

From Antti Karttunen, May 12 2014: (Start)
a(A003961(n)) = n for all n. [This is a left inverse function for the injection A003961.]
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014

Examples

			a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
		

Crossrefs

Cf. A064216 (odd bisection), A003961 (inverse), A151799.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
Similar prime-shifts towards smaller numbers: A252461, A252462, A252463.

Programs

  • Haskell
    a064989 1 = 1
    a064989 n = product $ map (a008578 . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
    ;; Antti Karttunen, May 12 2014
    (definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
    (definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
    
  • Maple
    q:= proc(p) prevprime(p) end proc: q(2):= 1:
    [seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
  • Mathematica
    Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i,1]) % 2, f[i,1] = precprime(p-1), f[i,1] = 1);); factorback(f);} \\ Michel Marcus, Dec 18 2014
    
  • PARI
    A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1),1),t[2]],Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
    
  • Python
    from math import prod
    from sympy import prevprime, factorint
    def A064989(n): return prod(prevprime(p)**e for p, e in  factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023

Formula

From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A242424(n) / A105560(n).
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(1) = 1; for n > 1, a(2n) = a(n), a(2n+1) = A163511((A243071(2n+1)-1) / 2).
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022

A245611 Permutation of natural numbers: a(n) = A243071(A064216(n)).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 31, 6, 63, 127, 14, 255, 5, 4, 511, 1023, 30, 13, 2047, 62, 4095, 8191, 12, 16383, 11, 126, 32767, 29, 254, 65535, 131071, 28, 61, 262143, 510, 524287, 1048575, 10, 27, 2097151, 8, 4194303, 125, 1022, 8388607, 59, 2046, 253, 16777215, 60, 33554431, 67108863, 26
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
The odd bisection of A243071 decremented by one and halved. (For a(1) = 0, take ceiling of -1/2).

Crossrefs

Programs

Formula

a(1) = 0, and for n > 1, a(n) = (1/2) * (A243071((2*n)-1) - 1).
As a composition of related permutations:
a(n) = A243071(A064216(n)).
a(n) = A054429(A244153(n)).

A244153 Permutation of natural numbers, the odd bisection of A156552 halved; equally, a composition of A064216 and A156552: a(n) = A156552(A064216(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 16, 5, 32, 64, 9, 128, 6, 7, 256, 512, 17, 10, 1024, 33, 2048, 4096, 11, 8192, 12, 65, 16384, 18, 129, 32768, 65536, 19, 34, 131072, 257, 262144, 524288, 13, 20, 1048576, 15, 2097152, 66, 513, 4194304, 36, 1025, 130, 8388608, 35, 16777216, 33554432, 21, 67108864, 134217728, 2049, 268435456, 258, 67, 68, 24, 4097, 14
Offset: 1

Views

Author

Antti Karttunen, Jun 27 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Programs

Formula

a(n) = A156552(2n+1) / 2.
As a composition of related permutations:
a(n) = A156552(A064216(n)).
a(n) = A054429(A245611(n)).

A245605 Permutation of natural numbers: a(1) = 1, a(2n) = 2 * a(A064989(2n-1)), a(2n-1) = 1 + (2 * a(A064989(2n-1)-1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 13, 18, 17, 26, 11, 12, 37, 34, 25, 74, 15, 16, 69, 50, 21, 14, 19, 20, 33, 138, 41, 66, 35, 52, 53, 22, 277, 82, 31, 32, 45, 554, 65, 90, 27, 36, 1109, 130, 101, 42, 43, 28, 73, 2218, 149, 30, 71, 104, 57, 146, 209, 114, 51, 148, 133, 70, 293, 418, 555, 164, 141, 586, 329, 282, 75, 68, 105, 106, 1173, 658, 23, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Comments

The even bisection halved gives A245607. The odd bisection incremented by one and halved gives A245707.

Crossrefs

Programs

  • PARI
    A064989(n) = my(f = factor(n)); for(i=1, #f~, if((2 == f[i,1]),f[i,1] = 1,f[i,1] = precprime(f[i,1]-1))); factorback(f);
    A245605(n) = if(1==n, 1, if(0==(n%2), 2*A245605(A064989(n-1)), 1+(2*A245605(A064989(n)-1))));
    for(n=1, 10001, write("b245605.txt", n, " ", A245605(n)));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A245605 n) (cond ((= 1 n) 1) ((even? n) (* 2 (A245605 (A064989 (- n 1))))) (else (+ 1 (* 2 (A245605 (-1+ (A064989 n))))))))

Formula

a(1) = 1, a(2n) = 2 * a(A064989(2n-1)), a(2n-1) = 1 + (2 * a(A064989(2n-1)-1)).
a(1) = 1, a(2n) = 2 * a(A064216(n)), a(2n-1) = 1 + (2 * a(A064216(n)-1)).
As a composition of related permutations:
a(n) = A245607(A048673(n)).

A245608 Permutation of natural numbers, the even bisection of A245606 halved: a(n) = A245606(2*n)/2.

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 13, 11, 6, 14, 18, 41, 7, 26, 28, 20, 9, 23, 63, 50, 25, 113, 313, 65, 12, 17, 88, 77, 172, 149, 43, 95, 16, 38, 33, 44, 10, 413, 163, 221, 19, 74, 48, 191, 22, 476, 118, 179, 49, 68, 138, 29, 39, 527, 78, 215, 31, 635, 1593, 227, 102, 71, 688, 242, 24, 122, 193, 104, 15, 98, 58, 176, 30, 32, 123
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A245606(2*n)/2.
As a composition of related permutations:
a(n) = A048673(A245606(n)).
a(n) = A245708(A245706(n)).
Other identities:
For all n >= 0, a(2^n) = A245708(2^n). Moreover, A245709 gives all such k that a(k) = A245708(k).

A243501 Permutation of even numbers: a(n) = 2*A048673(n).

Original entry on oeis.org

2, 4, 6, 10, 8, 16, 12, 28, 26, 22, 14, 46, 18, 34, 36, 82, 20, 76, 24, 64, 56, 40, 30, 136, 50, 52, 126, 100, 32, 106, 38, 244, 66, 58, 78, 226, 42, 70, 86, 190, 44, 166, 48, 118, 176, 88, 54, 406, 122, 148, 96, 154, 60, 376, 92, 298, 116, 94, 62, 316, 68, 112, 276, 730, 120
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Crossrefs

Formula

a(n) = 2*A048673(n).
a(n) = A003961(n) + 1.
a(n) = A243502(A245447(n)).

A245610 Permutation of natural numbers: a(n) = A048673(A244319(n)).

Original entry on oeis.org

1, 3, 2, 13, 8, 4, 26, 7, 5, 28, 14, 172, 149, 25, 41, 18, 635, 102, 113, 1194, 11, 43, 428, 22, 17, 6, 77, 88, 71, 259, 527, 130, 227, 48, 74, 12, 677, 235, 20, 688, 68, 634, 5711, 61, 50, 1593, 1490, 27612, 59, 39, 29, 63, 11438, 10119, 4748, 9, 344, 238, 413, 1602, 941, 69
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A048673(A244319(n)).

A245609 Permutation of natural numbers: a(n) = A244319(A064216(n)).

Original entry on oeis.org

1, 3, 2, 6, 9, 26, 8, 5, 56, 344, 21, 36, 4, 11, 204, 86, 25, 16, 176, 39, 518, 24, 125, 1376, 14, 7, 1268, 10, 51, 3186, 126, 1015, 298, 476, 305, 3204, 590, 115, 50, 5636, 15, 7118, 22, 825, 162, 2388, 153, 34, 626, 45, 4356, 144, 301, 156, 4374, 131, 816, 454, 49, 260, 44, 995, 52, 168, 81
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A244319(A064216(n)).

A245603 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*a(k), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = 1+(2*a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 16, 9, 7, 10, 12, 32, 17, 11, 13, 18, 14, 20, 24, 33, 19, 64, 15, 21, 25, 34, 22, 26, 36, 28, 40, 65, 35, 23, 27, 48, 37, 29, 41, 66, 38, 128, 30, 42, 49, 50, 68, 67, 44, 39, 52, 72, 129, 31, 43, 51, 69, 56, 45, 80, 53, 130, 73, 57, 70, 46, 54, 81, 96, 74, 58, 82, 131, 132, 76, 71, 256, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Inverse: A245604.
Similar permutations: A143692, A244152, A244321, A245613, A245605, A245607.

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, then a(n) = 2 * A245603(A055038(n)), otherwise a(n) = 1 + (2 * A245603(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244321(A245613(n)).
For all n >= 1, A000035(a(n)) = 1 - A066829(n). [Permutation A143692 has the same property.]
Showing 1-10 of 12 results. Next