A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).
0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1
Keywords
Links
Crossrefs
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A000040, A001222, A001358, A003961, A055396, A064989, A064216, A243055, A246272, A249810, A249820, A249735, A252463.
Programs
-
Mathematica
a246277[n_Integer] := Module[{f, p, a064989, a}, f[x_] := Transpose@FactorInteger[x]; p[x_] := Which[ x == 1, 1, x == 2, 1, True, NextPrime[x, -1]]; a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]]; a[1] = 0; a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2]; a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
-
PARI
A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
-
Python
from sympy import factorint, prevprime from operator import mul from functools import reduce def a064989(n): f=factorint(n) return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f]) def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
-
Scheme
;; two different variants, the second one employing memoizing definec-macro) (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n)))))) (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
Formula
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022
Comments