A379005 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.
1, 2, 3, 4, 5, 6, 1, 7, 8, 9, 1, 10, 1, 2, 11, 12, 1, 13, 1, 14, 3, 2, 1, 15, 16, 2, 17, 4, 1, 18, 1, 19, 3, 2, 5, 20, 1, 2, 3, 21, 1, 6, 1, 4, 22, 2, 1, 23, 1, 24, 3, 4, 1, 25, 5, 7, 3, 2, 1, 26, 1, 2, 8, 27, 5, 6, 1, 4, 3, 9, 1, 28, 1, 2, 29, 4, 1, 6, 1, 30, 31, 2, 1, 10, 5, 2, 3, 7, 1, 32, 1, 4, 3, 2, 5, 33, 1, 2, 8, 34, 1, 6, 1, 7, 11
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; v379005 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,3), valuation(n,5)])); A379005(n) = v379005[n];
Comments