cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A355582 a(n) is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 20, 3, 2, 1, 24, 25, 2, 27, 4, 1, 30, 1, 32, 3, 2, 5, 36, 1, 2, 3, 40, 1, 6, 1, 4, 45, 2, 1, 48, 1, 50, 3, 4, 1, 54, 5, 8, 3, 2, 1, 60, 1, 2, 9, 64, 5, 6, 1, 4, 3, 10, 1, 72, 1, 2, 75, 4, 1, 6, 1, 80
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Cf. A379005 (rgs-transform), A379006 (ordinal transform).

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = 3^valuation(n, 3) * 5^valuation(n, 5) << valuation(n, 2);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return 2**v(2, n) * 3**v(3, n) * 5**v(5, n)
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = p^e if p <= 5 and 1 otherwise.
a(n) = A006519(n) * A038500(n) * A060904(n).
a(n) = 2^A007814(n) * 3^A007949(n) * 5^A112765(n).
a(n) = n / A165725(n).
Dirichlet g.f.: zeta(s)*(2^s-1)*(3^s-1)*(5^s-1)/((2^s-2)*(3^s-3)*(5^s-5)). - Amiram Eldar, Dec 25 2022
Sum_{k=1..n} a(k) ~ 2*n*log(n)^3 / (45*log(2)*log(3)*log(5)) + O(n*log(n)^2). - Vaclav Kotesovec, Apr 20 2025

A379001 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11, 7, 12, 13, 14, 7, 15, 7, 16, 17, 12, 7, 18, 19, 12, 20, 21, 7, 22, 7, 23, 17, 12, 24, 25, 7, 12, 17, 26, 7, 27, 7, 21, 28, 12, 7, 29, 30, 31, 17, 21, 7, 32, 24, 33, 17, 12, 7, 34, 7, 12, 35, 36, 24, 27, 7, 21, 17, 37, 7, 38, 7, 12, 39, 21, 40, 27, 7, 41, 42, 12, 7, 43, 24, 12, 17, 33, 7, 44, 40, 21, 17, 12, 24, 45, 7, 46, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of ordered 4-tuple [A046523(n), A007814(n), A007949(n), A112765(n)].
For all i, j:
A379000(i) = A379000(j) => a(i) = a(j),
a(i) = a(j) => A358230(i) = A358230(j),
a(i) = a(j) => A379002(i) = A379002(j),
a(i) = a(j) => A379005(i) = A379005(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v379001 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379001(n) = v379001[n];

A379004 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814) and v_5 (A112765) give the 2- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 1, 5, 1, 6, 1, 3, 1, 2, 4, 7, 1, 2, 1, 8, 1, 2, 1, 5, 9, 2, 1, 3, 1, 6, 1, 10, 1, 2, 4, 3, 1, 2, 1, 11, 1, 2, 1, 3, 4, 2, 1, 7, 1, 12, 1, 3, 1, 2, 4, 5, 1, 2, 1, 8, 1, 2, 1, 13, 4, 2, 1, 3, 1, 6, 1, 5, 1, 2, 9, 3, 1, 2, 1, 14, 1, 2, 1, 3, 4, 2, 1, 5, 1, 6, 1, 3, 1, 2, 4, 10, 1, 2, 1, 15, 1, 2, 1, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of A132741, or equally, of the ordered pair [A007814(n), A112765(n)].
For all i, j:
A379005(i) = A379005(j) => a(i) = a(j).
A379003 (after its initial 0) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A007814, A112765, A132741, A379003 (ordinal transform), A379005.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v379004 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,5)]));
    A379004(n) = v379004[n];

A379006 Ordinal transform of A355582, where A355582 is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4, 2, 1, 1, 5, 1, 6, 1, 2, 3, 7, 1, 1, 4, 1, 2, 8, 1, 9, 1, 3, 5, 2, 1, 10, 6, 4, 1, 11, 2, 12, 3, 1, 7, 13, 1, 14, 1, 5, 4, 15, 1, 3, 2, 6, 8, 16, 1, 17, 9, 2, 1, 4, 3, 18, 5, 7, 2, 19, 1, 20, 10, 1, 6, 21, 4, 22, 1, 1, 11, 23, 2, 5, 12, 8, 3, 24, 1, 25, 7, 9, 13, 6, 1, 26, 14, 3, 1, 27, 5, 28, 4, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Cf. A355582.
Cf. A379005 (ordinal transform).
Cf. also A003602, A126760.

Programs

  • PARI
    up_to = 20000;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    is_A051037(n) = (n<7||vecmax(factor(n, 6)[, 1])<7); \\ From A051037
    A355582(n) = fordiv(n,d,if(is_A051037(n/d),return(n/d)));
    v379006 = ordinal_transform(vector(up_to, n, A355582(n)));
    A379006(n) = v379006[n];

A379000 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is prime > 5, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11, 7, 12, 13, 14, 7, 15, 7, 16, 17, 18, 7, 19, 20, 21, 22, 23, 7, 24, 7, 25, 26, 27, 28, 29, 7, 30, 31, 32, 7, 33, 7, 34, 35, 36, 7, 37, 38, 39, 40, 41, 7, 42, 43, 44, 45, 46, 7, 47, 7, 48, 49, 50, 51, 52, 7, 53, 54, 55, 7, 56, 7, 57, 58, 59, 60, 61, 7, 62, 63, 64, 7, 65, 66, 67, 68, 69, 7, 70, 71, 72, 73, 74, 75, 76, 7, 77, 78, 79, 7
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

For all i, j:
a(i) = a(j) => A305900(i) = A305900(j) => A305801(i) = A305801(j) => A305800(i) = A305800(j),
a(i) = a(j) => A379001(i) = A379001(j) => A379002(i) = A379002(j),
a(i) = a(j) => A379005(i) = A379005(j).

Crossrefs

Programs

  • PARI
    A379000(n) = if(n<=7, n, if(isprime(n), 7, 4+n-primepi(n)));

Formula

For n < 7, a(n) = n, for primes > 5, a(n) = 7, and for composite n > 7, a(n) = 4+n-A000720(n).
Showing 1-5 of 5 results.