A379045 a(1) = 1. For n > 1, a(n) is the least odd prime p which cannot be represented as the sum of a subset of the previous terms.
1, 3, 5, 7, 17, 19, 53, 67, 173, 211, 439, 997, 1993, 2801, 4969, 6791, 13697, 18661, 50849, 50971, 106669, 152729, 310127, 412333, 826097, 1134841, 2271053, 2991883, 4952809, 7223627, 18574201, 20534933, 40243939, 60778433, 100713031, 222270319, 241670423, 563829493
Offset: 1
Keywords
Examples
11 is not a term since 11 = 7 + 3 + 1. 13 is not a term since 13 = 7 + 5 + 1.
Programs
-
Maple
b:= proc(n, i) option remember; n=0 or i>0 and s(i)>=n and (b(n, i-1) or a(i)<=n and b(n-a(i), i-1)) end: s:= proc(n) option remember; `if`(n<1, 0, s(n-1)+a(n)) end: a:= proc(n) option remember; local p; p:= a(n-1); while b(p, n-1) do p:= nextprime(p) od; p end: a(1), a(2):=1, 3: seq(a(n), n=1..26); # Alois P. Heinz, Dec 15 2024
-
Mathematica
b[n_, i_] := b[n, i] = n == 0 || i > 0 && s[i] >= n && (b[n, i-1] || a[i] <= n && b[n - a[i], i-1]); s[n_] := s[n] = If[n < 1, 0, s[n-1] + a[n]]; a[n_] := a[n] = Module[{p = a[n-1]}, While[b[p, n-1], p = NextPrime[p]]; p]; {a[1], a[2]} = {1, 3}; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 02 2025, after Alois P. Heinz *)
Extensions
a(21)-a(37) from Alois P. Heinz, Dec 14 2024
a(38) from Jinyuan Wang, Dec 16 2024