cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A378696 Numbers k such that omega(k)^k == omega(k) (mod k), where omega = A001221.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 66, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2024

Keywords

Comments

The sequence without A000961 and A001567 is 2665, 3367, 5551, 7107, 8205, 11011, 15457, 16471, 19345 ,... (see A379056).

Crossrefs

Supersequence of A000961 and A002997.

Programs

  • Magma
    [k: k in [1..250] | #PrimeDivisors(k)^k mod k eq #PrimeDivisors(k)];
    
  • Maple
    filter:= proc(k) local w;
      w:= nops(numtheory:-factorset(k));
      w &^k - w mod k = 0
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Dec 08 2024
  • Mathematica
    q[k_] := Module[{om = PrimeNu[k]}, PowerMod[om, k, k] == om]; Select[Range[250], q] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    isok(k) = my(x=omega(k)); Mod(x, k)^k == Mod(x, k); \\ Michel Marcus, Dec 04 2024
Showing 1-1 of 1 results.