cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379108 Dirichlet convolution of sigma with A359579.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 12, 12, 14, 14, 18, 16, 18, 20, 20, 24, 21, 24, 24, 24, 31, 28, 30, 28, 30, 36, 31, 32, 36, 36, 42, 40, 38, 40, 42, 48, 42, 42, 44, 48, 60, 48, 48, 48, 50, 62, 54, 56, 54, 60, 72, 56, 60, 60, 60, 72, 62, 62, 70, 64, 84, 72, 68, 72, 72, 84, 72, 80, 74, 76, 93, 80, 84, 84, 80, 96, 91, 84, 84, 84
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Cf. A000203, A000668, A054784, A336923, A359579, A379109 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, (p^(e + 2) + ((-1)^e - 1)*(p - 1)/2 - 1)/(p^2 - 1), (p^(e + 1) - 1)/(p - 1)]; f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A359579(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1], -(1==f[k,2]), (-A209229(1+f[k,1]))^f[k,2])); };
    A379108(n) = sumdiv(n,d,sigma(d)*A359579(n/d));

Formula

a(n) = Sum_{d|n} A000203(d)*A359579(n/d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = 2^e, and for an odd prime p, a(p^e) = (p^(e+2) + ((-1)^e-1)*(p-1)/2 - 1)/(p^2-1) if p is a Mersenne prime (A000668), and a(p^e) = sigma(p^e) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/16) / Product_{p in A000668} (1 + 1/p^2) = 0.54346268676686758531... . (End)