cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379218 Möbius transform of A379108.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 4, 7, 5, 11, 4, 13, 6, 10, 8, 17, 7, 19, 10, 12, 11, 23, 8, 25, 13, 20, 12, 29, 10, 30, 16, 22, 17, 30, 14, 37, 19, 26, 20, 41, 12, 43, 22, 35, 23, 47, 16, 43, 25, 34, 26, 53, 20, 55, 24, 38, 29, 59, 20, 61, 30, 42, 32, 65, 22, 67, 34, 46, 30, 71, 28, 73, 37, 50, 38, 66, 26, 79, 40, 61, 41, 83, 24
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Comments

Dirichlet convolution of A000027 with A359579.

Crossrefs

Cf. A000027, A000203, A000668, A008683, A336923, A359579, A379108, A379219 (Dirichlet inverse).
Cf. also A026741.

Programs

  • Mathematica
    f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, (p^(e + 1) + (-1)^e)/(p + 1), p^e]; f[2, e_] := 2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A359579(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1], -(1==f[k,2]), (-A209229(1+f[k,1]))^f[k,2])); };
    A379218(n) = sumdiv(n,d,d*A359579(n/d));

Formula

a(n) = Sum_{d|n} d*A359579(n/d).
a(n) = Sum_{d|n} A008683(d)*A379108(n/d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = 2^(e-1), and for an odd prime p, a(p^e) = (p^(e + 1) + (-1)^e)/(p + 1) if p is a Mersenne prime (A000668), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/8) / Product_{p in A000668} (1 + 1/p^2) = 0.33038569613198448017... . (End)

A379109 Dirichlet convolution of A046692 (inverse of sigma) with A336923, where A336923(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.

Original entry on oeis.org

1, -2, -3, 0, -6, 6, -7, 0, -1, 12, -12, 0, -14, 14, 18, 0, -18, 2, -20, 0, 21, 24, -24, 0, 5, 28, 3, 0, -30, -36, -31, 0, 36, 36, 42, 0, -38, 40, 42, 0, -42, -42, -44, 0, 6, 48, -48, 0, -1, -10, 54, 0, -54, -6, 72, 0, 60, 60, -60, 0, -62, 62, 7, 0, 84, -72, -68, 0, 72, -84, -72, 0, -74, 76, -15, 0, 84, -84, -80, 0, 0, 84
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Cf. A000203, A000668, A046692, A054784, A336923, A379108 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, Which[e == 1, -p, e == 2, -1, e == 3, p, e > 3, 0], Which[e == 1, -p - 1, e == 2, p, e > 2, 0]]; f[2, e_] := If[e == 1, -2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2025 *)
  • PARI
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A209229(n) = (n && !bitand(n,n-1));
    A336923(n) = A209229(sigma(n+n)-sigma(n));
    A379109(n) = sumdiv(n,d,A046692(d)*A336923(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A336923(n/d).
Multiplicative with a(2^e) = -2 if e = 1 and 0 otherwise, and for an odd prime p, if p is a Mersenne prime, a(p) = -p, a(p^2) = -1, a(p^3) = p, and a(p^e) = 0 for e >= 4, and otherwise a(p) = -(p+1), a(p^2) = p and a(p^e) = 0 for e >= 3. - Amiram Eldar, Jan 03 2025
Showing 1-2 of 2 results.