A379108 Dirichlet convolution of sigma with A359579.
1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 12, 12, 14, 14, 18, 16, 18, 20, 20, 24, 21, 24, 24, 24, 31, 28, 30, 28, 30, 36, 31, 32, 36, 36, 42, 40, 38, 40, 42, 48, 42, 42, 44, 48, 60, 48, 48, 48, 50, 62, 54, 56, 54, 60, 72, 56, 60, 60, 60, 72, 62, 62, 70, 64, 84, 72, 68, 72, 72, 84, 72, 80, 74, 76, 93, 80, 84, 84, 80, 96, 91, 84, 84, 84
Offset: 1
Links
Programs
-
Mathematica
f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, (p^(e + 2) + ((-1)^e - 1)*(p - 1)/2 - 1)/(p^2 - 1), (p^(e + 1) - 1)/(p - 1)]; f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
-
PARI
A209229(n) = (n && !bitand(n,n-1)); A359579(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1], -(1==f[k,2]), (-A209229(1+f[k,1]))^f[k,2])); }; A379108(n) = sumdiv(n,d,sigma(d)*A359579(n/d));
Formula
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = 2^e, and for an odd prime p, a(p^e) = (p^(e+2) + ((-1)^e-1)*(p-1)/2 - 1)/(p^2-1) if p is a Mersenne prime (A000668), and a(p^e) = sigma(p^e) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/16) / Product_{p in A000668} (1 + 1/p^2) = 0.54346268676686758531... . (End)