A280984 Minimum number of dominoes on an n X n chessboard needed to prevent placement of another domino.
0, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 122, 134, 147, 163, 178, 192, 210, 227, 243, 263, 282, 300, 322, 343, 363
Offset: 1
Links
- Andrejs Cibulis and Walter Trump, Domino Exclusion Problem, Baltic J. Modern Computing, Vol. 8 (2020), No. 4, 496-519.
- A. Gyárfás, J. Lehel, and Zs. Tuza, Clumsy packing of dominoes, Discrete Mathematics, Volume 71, Issue 1 (1988), 33-46.
- Peter Kagey, Minimum number of dominoes on an n X n chessboard to prevent placement of another domino.
- Mathematics Stack Exchange user "Manin", Minimum Guard Problem.
- Walter Trump, Minimum Domino Packing
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
Crossrefs
Formula
Proved: a(n) >= A008810(n) for n>1; when n = 0 (mod 3), a(n) = A008810(n). - Andrey Zabolotskiy, Oct 22 2017
a(n) > n^2/3 + n/111 for large n not congruent to 0 (mod 3) [from Gyárfás, Lehel, Tuza]. - Peter Kagey, May 22 2019
Extensions
a(10)-a(14) from Lars Blomberg, Aug 08 2017
a(15) from Andrey Zabolotskiy, Oct 20 2017
a(16)-a(17) from Rob Pratt (see the link to Peter Kagey's question) and a(18) added by Andrey Zabolotskiy, Feb 13 2020
a(19)-a(33) from Walter Trump, Jun 14 2020
Comments