cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379210 List of integers of the form (N^2 - 4)/15.

Original entry on oeis.org

0, 3, 4, 11, 19, 32, 35, 52, 68, 91, 96, 123, 147, 180, 187, 224, 256, 299, 308, 355, 395, 448, 459, 516, 564, 627, 640, 707, 763, 836, 851, 928, 992, 1075, 1092, 1179, 1251, 1344, 1363, 1460, 1540, 1643, 1664, 1771, 1859, 1972, 1995, 2112, 2208, 2331, 2356, 2483
Offset: 1

Views

Author

Peter Bala, Dec 18 2024

Keywords

Comments

Compare with A204221.
The sequence terms occur as exponents in the expansion of Sum_{n >= 1} x^(n*(n-1)) * Product_{k >= 2*n} 1 - x^k = 1 - x^3 - x^4 + x^11 + x^19 - x^32 - x^35 + + - - ....
|A379212(n)| is the characteristic function of the numbers in this sequence.

Crossrefs

Cf. A204220, A204221, A204542, A379211 (square roots of 15*a(n) + 4), A379212.

Programs

  • Maple
    A379210 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(15*n+4), integer) then print(n);
    fi; od; end:
    A379210(2500);
  • Mathematica
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0, 3, 4, 11, 19, 32, 35, 52, 68},52] (* James C. McMahon, Dec 24 2024 *)

Formula

a(n) = (1/32)*(30*n^2 - 30*n + 1) + (-1)^(n)*(5/32)*(2*n - 1) - (-1)^(n*(n+1)/2)*(1/16)*(6*n - 3 + (-1)^n).
a(n) is quasi-periodic in n: for n >= 0,
a(4*n+1) = 15*n^2 - 26*n + 11; a(4*n+2) = 15*n^2 - 16*n + 4;
a(4*n+3) = 15*n^2 - 14*n + 3; a(4*n+4) = 15*n^2 - 4*n.
a(1-n) = a(n).
15*a(n) + 4 = A379211(n)^2.
G.f: x*(3*x^6 + x^5 + 7*x^4 + 8*x^3 + 7*x^2 + x + 3)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).
E.g.f.: ((15*x^2 + 35*x - 2)*cosh(x) + 2*(cos(x) + 3*x*cos(x) + 2*sin(x) - 3*x*sin(x)) + (15*x^2 + 25*x + 3)*sinh(x))/16. - Stefano Spezia, Dec 23 2024