cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379211 List of positive integers that are congruent to {2, 7, 8, 13} mod 15.

Original entry on oeis.org

2, 7, 8, 13, 17, 22, 23, 28, 32, 37, 38, 43, 47, 52, 53, 58, 62, 67, 68, 73, 77, 82, 83, 88, 92, 97, 98, 103, 107, 112, 113, 118, 122, 127, 128, 133, 137, 142, 143, 148, 152, 157, 158, 163, 167, 172, 173, 178, 182, 187, 188, 193, 197, 202, 203, 208, 212, 217, 218, 223, 227, 232, 233, 238, 242, 247, 248, 253, 257, 262
Offset: 1

Views

Author

Peter Bala, Dec 18 2024

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
          `if`(n < 5, [0, 2, 7, 8, 13][n+1], 15 + a(n-4))
         end:
    seq(a(n), n = 1..70);
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 7, 8, 13, 17}, 70] (* Amiram Eldar, Dec 24 2024 *)

Formula

a(n) = 15 + a(n-4); a(n) = - a(1-n).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 6.
G.f.: x*(x^2 + 3*x + 1)*(2*x^2 - x + 2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n)^2 = 15 * A379210(n) + 4.
For n >= 2, a(n-1) + a(n+1) = A072703(n).
It appears that a(n) + a(n+1) = (3/2) * A315211(n).
E.g.f.: (8 - 3*cos(x) + 5*(3*x - 1)*cosh(x) + 3*sin(x) + 5*(3*x - 2)*sinh(x))/4. - Stefano Spezia, Dec 23 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(5*sqrt(3)*phi), where phi is the golden ratio (A001622). - Amiram Eldar, Dec 24 2024