A379211 List of positive integers that are congruent to {2, 7, 8, 13} mod 15.
2, 7, 8, 13, 17, 22, 23, 28, 32, 37, 38, 43, 47, 52, 53, 58, 62, 67, 68, 73, 77, 82, 83, 88, 92, 97, 98, 103, 107, 112, 113, 118, 122, 127, 128, 133, 137, 142, 143, 148, 152, 157, 158, 163, 167, 172, 173, 178, 182, 187, 188, 193, 197, 202, 203, 208, 212, 217, 218, 223, 227, 232, 233, 238, 242, 247, 248, 253, 257, 262
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
a := proc(n) option remember; `if`(n < 5, [0, 2, 7, 8, 13][n+1], 15 + a(n-4)) end: seq(a(n), n = 1..70);
-
Mathematica
LinearRecurrence[{1, 0, 0, 1, -1}, {2, 7, 8, 13, 17}, 70] (* Amiram Eldar, Dec 24 2024 *)
Formula
a(n) = 15 + a(n-4); a(n) = - a(1-n).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 6.
G.f.: x*(x^2 + 3*x + 1)*(2*x^2 - x + 2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n)^2 = 15 * A379210(n) + 4.
For n >= 2, a(n-1) + a(n+1) = A072703(n).
It appears that a(n) + a(n+1) = (3/2) * A315211(n).
E.g.f.: (8 - 3*cos(x) + 5*(3*x - 1)*cosh(x) + 3*sin(x) + 5*(3*x - 2)*sinh(x))/4. - Stefano Spezia, Dec 23 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(5*sqrt(3)*phi), where phi is the golden ratio (A001622). - Amiram Eldar, Dec 24 2024