cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379223 Sum of the divisors of the n-th odd square: a(n) = sigma((2*n-1)^2).

Original entry on oeis.org

1, 13, 31, 57, 121, 133, 183, 403, 307, 381, 741, 553, 781, 1093, 871, 993, 1729, 1767, 1407, 2379, 1723, 1893, 3751, 2257, 2801, 3991, 2863, 4123, 4953, 3541, 3783, 6897, 5673, 4557, 7189, 5113, 5403, 10153, 7581, 6321, 9841, 6973, 9517, 11323, 8011, 10431, 12909, 11811, 9507, 16093, 10303, 10713, 22971, 11557
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

Sequence contains duplicates. For example, a(314) = a(375) = 658749 and a(1007) = a(1279) = 6540807.

Crossrefs

Cf. A000203, A016754, A065768 (same sequence sorted into ascending order, with duplicates removed), A379224 [= A065621(a(n))].
First row and column of array A379220, first row of array A379221.

Programs

  • Mathematica
    Table[DivisorSigma[1,(2n-1)^2],{n,54}] (* James C. McMahon, Dec 22 2024 *)
  • PARI
    A379223(n) = sigma((2*n-1)^2);
    
  • Python
    from math import prod
    from sympy import factorint
    def A379223(n): return prod((p**((e<<1)|1)-1)//(p-1) for p, e in factorint((n<<1)-1).items()) # Chai Wah Wu, Dec 21 2024

Formula

a(n) = A000203(A016754(n-1)).

A379220 Square array A(n, k) = sigma((2n-1)^2) * sigma((2k-1)^2), read by antidiagonals.

Original entry on oeis.org

1, 13, 13, 31, 169, 31, 57, 403, 403, 57, 121, 741, 961, 741, 121, 133, 1573, 1767, 1767, 1573, 133, 183, 1729, 3751, 3249, 3751, 1729, 183, 403, 2379, 4123, 6897, 6897, 4123, 2379, 403, 307, 5239, 5673, 7581, 14641, 7581, 5673, 5239, 307, 381, 3991, 12493, 10431, 16093, 16093, 10431, 12493, 3991, 381, 741, 4953, 9517, 22971, 22143, 17689, 22143, 22971, 9517, 4953, 741
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2024

Keywords

Comments

Array is symmetric.

Examples

			The top left corner of the array:
   n\k   |    1      2      3      4       5       6       7       8       9
(*2-1)^2 |    1      9     25     49      81     121     169     225     289
---------+-------------------------------------------------------------------
   1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
   2   9 |   13,   169,   403,   741,   1573,   1729,   2379,   5239,   3991,
   3  25 |   31,   403,   961,  1767,   3751,   4123,   5673,  12493,   9517,
   4  49 |   57,   741,  1767,  3249,   6897,   7581,  10431,  22971,  17499,
   5  81 |  121,  1573,  3751,  6897,  14641,  16093,  22143,  48763,  37147,
   6 121 |  133,  1729,  4123,  7581,  16093,  17689,  24339,  53599,  40831,
   7 169 |  183,  2379,  5673, 10431,  22143,  24339,  33489,  73749,  56181,
   8 225 |  403,  5239, 12493, 22971,  48763,  53599,  73749, 162409, 123721,
   9 289 |  307,  3991,  9517, 17499,  37147,  40831,  56181, 123721,  94249,
  10 361 |  381,  4953, 11811, 21717,  46101,  50673,  69723, 153543, 116967,
  11 441 |  741,  9633, 22971, 42237,  89661,  98553, 135603, 298623, 227487,
  12 529 |  553,  7189, 17143, 31521,  66913,  73549, 101199, 222859, 169771,
  13 625 |  781, 10153, 24211, 44517,  94501, 103873, 142923, 314743, 239767,
  14 729 | 1093, 14209, 33883, 62301, 132253, 145369, 200019, 440479, 335551,
  15 841 |  871, 11323, 27001, 49647, 105391, 115843, 159393, 351013, 267397,
  16 961 |  993, 12909, 30783, 56601, 120153, 132069, 181719, 400179, 304851,
		

Crossrefs

Cf. A379223 (the first row and the first column).
Cf. also A379221.

Programs

  • PARI
    up_to = 66;
    A379220sq(x,y) = (sigma((x+x-1)^2) * sigma((y+y-1)^2));
    A379220list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379220sq(col,(a-(col-1))))); (v); };
    v379220 = A379220list(up_to);
    A379220(n) = v379220[n];

Formula

A(n, k) = A379223(n) * A379223(k).
A(n, k) = A000203(A016754(n-1)) * A000203(A016754(k-1)). [NB: A016754 uses 0-based indexing]

A379224 The reversing binary representation of the sum of the divisors of the n-th odd square: a(n) = A065621(A379223(n)).

Original entry on oeis.org

1, 21, 35, 73, 137, 397, 475, 695, 855, 901, 1837, 1657, 1301, 3277, 1451, 1057, 2881, 2859, 3971, 7135, 3023, 2477, 5099, 6513, 7953, 4283, 7539, 12335, 13801, 5757, 4939, 12049, 14969, 12885, 9277, 13321, 16175, 26873, 9893, 10705, 27281, 11589, 28533, 29775, 8671, 31171, 22197, 29287, 28519, 17253, 30787, 31337
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Crossrefs

The first column of square array A379221.

Programs

Formula

a(n) = A065621(A379223(n)).
Showing 1-3 of 3 results.