cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A379224 The reversing binary representation of the sum of the divisors of the n-th odd square: a(n) = A065621(A379223(n)).

Original entry on oeis.org

1, 21, 35, 73, 137, 397, 475, 695, 855, 901, 1837, 1657, 1301, 3277, 1451, 1057, 2881, 2859, 3971, 7135, 3023, 2477, 5099, 6513, 7953, 4283, 7539, 12335, 13801, 5757, 4939, 12049, 14969, 12885, 9277, 13321, 16175, 26873, 9893, 10705, 27281, 11589, 28533, 29775, 8671, 31171, 22197, 29287, 28519, 17253, 30787, 31337
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Crossrefs

The first column of square array A379221.

Programs

Formula

a(n) = A065621(A379223(n)).

A065768 Numbers that are sums of divisors of the odd squares; Intersection of A065764 and A065766, written in ascending order and duplicates removed.

Original entry on oeis.org

1, 13, 31, 57, 121, 133, 183, 307, 381, 403, 553, 741, 781, 871, 993, 1093, 1407, 1723, 1729, 1767, 1893, 2257, 2379, 2801, 2863, 3541, 3751, 3783, 3991, 4123, 4557, 4953, 5113, 5403, 5673, 6321, 6897, 6973, 7189, 7581, 8011, 9507, 9517, 9841, 10153
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Terms are the sum of the odd divisors (A000593) of the odd squares (A016754), written in ascending order. Subsequence of the odd terms of A274790. - Timothy L. Tiffin, Feb 12 2022
Equally, the sum of divisors (A000203) as only odd divisors are present in odd squares. - Antti Karttunen, Dec 22 2024

Crossrefs

Sequence A379223 sorted into ascending order, with duplicates removed.

Programs

  • Mathematica
    f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[2, e_] := (4^(e + 1) - 1)/3; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; seq[max_] := Intersection[Select[Array[s1, max], # < max^2 &], Select[Array[s2, max], # < max^2 &]]; seq[101] (* Amiram Eldar, Aug 24 2024 *)

Extensions

Old definition clarified and Timothy L. Tiffin's comment adopted as a new primary definition - Antti Karttunen, Dec 22 2024

A379221 Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.

Original entry on oeis.org

1, 13, 21, 31, 233, 35, 57, 403, 439, 73, 121, 845, 961, 805, 137, 133, 1549, 1899, 1831, 1765, 397, 183, 2753, 4011, 4017, 3943, 3025, 475, 403, 2331, 4399, 7665, 7537, 4123, 2159, 695, 307, 7919, 5945, 9709, 16177, 9365, 5737, 7635, 855, 381, 5839, 12501, 10447, 17965, 18389, 10707, 13261, 5299, 901, 741, 4953, 9525, 27083, 24207, 49465, 24339, 27295, 10093, 4537, 1837
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2024

Keywords

Examples

			The top left corner of the array:
   n\k   |    1      2      3      4       5       6       7       8       9
(*2-1)^2 |    1      9     25     49      81     121     169     225     289
---------+-------------------------------------------------------------------
   1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
   2   9 |   21,   233,   403,   845,   1549,   2753,   2331,   7919,   5839,
   3  25 |   35,   439,   961,  1899,   4011,   4399,   5945,  12501,   9525,
   4  49 |   73,   805,  1831,  4017,   7665,   9709,  10447,  27083,  17515,
   5  81 |  137,  1765,  3943,  7537,  16177,  17965,  24207,  50315,  37163,
   6 121 |  397,  3025,  4123,  9365,  18389,  49465,  60243,  86471, 108263,
   7 169 |  475,  2159,  5737, 10707,  24339,  60215,  52817,  76125, 131005,
   8 225 |  695,  7635, 13261, 27295,  51039,  87019,  76565, 245801, 183625,
   9 289 |  855,  5299, 10093, 18047,  37823, 107915, 130229, 183305, 200041,
  10 361 |  901,  4537, 12003, 22365,  46621, 118545,  98539, 162655, 248191,
  11 441 | 1837,  8945, 24187, 43317,  90741, 232729, 201779, 311335, 504583,
  12 529 | 1657, 11349, 18231, 40193,  66369, 205597, 231263, 338075, 449339,
  13 625 | 1301, 14825, 25235, 56909, 105229, 170945, 156187, 508399, 387535,
  14 729 | 3277, 22929, 36059, 81877, 134293, 416121, 464275, 684551, 888103,
  15 841 | 1451, 15967, 28601, 50979, 110051, 181895, 139777, 469709, 346669,
  16 961 | 1057, 13741, 32767, 58137, 125785, 132133, 182871, 425971, 322387,
		

Crossrefs

Cf. A379223 (row 1), A379224 (column 1).
Cf. also A065768, A379220.

Programs

  • PARI
    up_to = 66;
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    A379221sq(x,y) = A048720(A065621(sigma((x+x-1)^2)), sigma((y+y-1)^2));
    A379221list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379221sq(col,(a-(col-1))))); (v); };
    v379221 = A379221list(up_to);
    A379221(n) = v379221[n];

Formula

A(n, k) = A277320(A379223(n), A379223(k)).

A379482 a(n) = sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 13, 31, 121, 57, 403, 133, 1093, 781, 741, 183, 3751, 307, 1729, 1767, 9841, 381, 10153, 553, 6897, 4123, 2379, 871, 33883, 2801, 3991, 19531, 16093, 993, 22971, 1407, 88573, 5673, 4953, 7581, 94501, 1723, 7189, 9517, 62301, 1893, 53599, 2257, 22143, 44517, 11323, 2863, 305071, 16105, 36413, 11811, 37147, 3541
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[DivisorSigma[1, #] &[Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2] &, 52, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379482(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); sigma(factorback(f)); };

Formula

Multiplicative with a(p^e) = (q^(2e+1) - 1)/(q-1), where q = nextprime(p) = A151800(p).
a(n) = A000203(A379481(n)) = A003973(A000290(n)).
a(n) = A379223(A048673(n)).
a(n) = 2*A379481(n) - A378231(n).

A379220 Square array A(n, k) = sigma((2n-1)^2) * sigma((2k-1)^2), read by antidiagonals.

Original entry on oeis.org

1, 13, 13, 31, 169, 31, 57, 403, 403, 57, 121, 741, 961, 741, 121, 133, 1573, 1767, 1767, 1573, 133, 183, 1729, 3751, 3249, 3751, 1729, 183, 403, 2379, 4123, 6897, 6897, 4123, 2379, 403, 307, 5239, 5673, 7581, 14641, 7581, 5673, 5239, 307, 381, 3991, 12493, 10431, 16093, 16093, 10431, 12493, 3991, 381, 741, 4953, 9517, 22971, 22143, 17689, 22143, 22971, 9517, 4953, 741
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2024

Keywords

Comments

Array is symmetric.

Examples

			The top left corner of the array:
   n\k   |    1      2      3      4       5       6       7       8       9
(*2-1)^2 |    1      9     25     49      81     121     169     225     289
---------+-------------------------------------------------------------------
   1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
   2   9 |   13,   169,   403,   741,   1573,   1729,   2379,   5239,   3991,
   3  25 |   31,   403,   961,  1767,   3751,   4123,   5673,  12493,   9517,
   4  49 |   57,   741,  1767,  3249,   6897,   7581,  10431,  22971,  17499,
   5  81 |  121,  1573,  3751,  6897,  14641,  16093,  22143,  48763,  37147,
   6 121 |  133,  1729,  4123,  7581,  16093,  17689,  24339,  53599,  40831,
   7 169 |  183,  2379,  5673, 10431,  22143,  24339,  33489,  73749,  56181,
   8 225 |  403,  5239, 12493, 22971,  48763,  53599,  73749, 162409, 123721,
   9 289 |  307,  3991,  9517, 17499,  37147,  40831,  56181, 123721,  94249,
  10 361 |  381,  4953, 11811, 21717,  46101,  50673,  69723, 153543, 116967,
  11 441 |  741,  9633, 22971, 42237,  89661,  98553, 135603, 298623, 227487,
  12 529 |  553,  7189, 17143, 31521,  66913,  73549, 101199, 222859, 169771,
  13 625 |  781, 10153, 24211, 44517,  94501, 103873, 142923, 314743, 239767,
  14 729 | 1093, 14209, 33883, 62301, 132253, 145369, 200019, 440479, 335551,
  15 841 |  871, 11323, 27001, 49647, 105391, 115843, 159393, 351013, 267397,
  16 961 |  993, 12909, 30783, 56601, 120153, 132069, 181719, 400179, 304851,
		

Crossrefs

Cf. A379223 (the first row and the first column).
Cf. also A379221.

Programs

  • PARI
    up_to = 66;
    A379220sq(x,y) = (sigma((x+x-1)^2) * sigma((y+y-1)^2));
    A379220list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379220sq(col,(a-(col-1))))); (v); };
    v379220 = A379220list(up_to);
    A379220(n) = v379220[n];

Formula

A(n, k) = A379223(n) * A379223(k).
A(n, k) = A000203(A016754(n-1)) * A000203(A016754(k-1)). [NB: A016754 uses 0-based indexing]
Showing 1-5 of 5 results.