cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379481 Square of prime-shifted n, or equally, n squared, then prime-shifted one step towards larger primes.

Original entry on oeis.org

1, 9, 25, 81, 49, 225, 121, 729, 625, 441, 169, 2025, 289, 1089, 1225, 6561, 361, 5625, 529, 3969, 3025, 1521, 841, 18225, 2401, 2601, 15625, 9801, 961, 11025, 1369, 59049, 4225, 3249, 5929, 50625, 1681, 4761, 7225, 35721, 1849, 27225, 2209, 13689, 30625, 7569, 2809, 164025, 14641, 21609, 9025, 23409, 3481, 140625
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Cf. A000290, A003961, A016754, A048673, A111003, A337336, A378231, A379482 [= sigma(a(n))], A379484 [= A379473(a(n))].

Programs

  • Mathematica
    {1}~Join~Array[Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2 &, 53, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379481(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); factorback(f); };

Formula

Fully multiplicative with a(prime(i)) = prime(i+1)^2.
a(n) = A003961(n^2) = A003961(n)^2.
a(n) = A016754(A048673(n)-1).
a(n) = (1/2)*(A378231(n)+A379482(n)).
From Amiram Eldar, Dec 28 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^2/72. (End)

A379484 a(n) is the highest power of 3 dividing sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 9, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[3^IntegerExponent[#, 3] &[
      DivisorSigma[1,
        Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]^2]] &,
    105, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379484(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); 3^valuation(sigma(factorback(f)),3); };

Formula

Multiplicative with a(p^e) = A038500((q^(2e+1) - 1)/(q-1)), where q = nextprime(p) = A151800(p).
a(n) = A038500(A379482(n)).
a(n) = A379473(A379481(n)).

A379483 a(n) is the number of trailing 1-bits in the binary representation of sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 3, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 2, 1, 1, 2, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 7, 1, 2, 4, 4, 1, 1, 2, 2, 1, 4, 6, 1, 3, 1, 3, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 7, 4, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 7, 4, 1, 2, 1, 2, 6, 1, 2, 1, 1, 3, 1, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[Length@ Last@ Split[IntegerDigits[#, 2]][[1 ;; -1 ;; 2]] &[
    DivisorSigma[1,
      Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2] ] &,
        105, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379483(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); valuation(1+sigma(factorback(f)),2); };

Formula

a(n) = A007814(1+A379482(n)).
a(n) = A379222(A048673(n)).
Showing 1-3 of 3 results.