cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380193 a(n) is the largest number whose sixth power is an n-digit sixth power which has the maximum sum of digits (A373994(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 19, 31, 46, 68, 96, 143, 206, 304, 461, 677, 977, 1194, 2136, 2896, 4633, 6373, 9763, 13817, 21542, 30643, 43693, 68123, 99812, 144083, 183967, 311296, 463976, 681017, 994333, 1441977, 2150104, 3022731, 4608562, 6765526, 9258023
Offset: 1

Views

Author

Zhining Yang, Jan 15 2025

Keywords

Examples

			a(11) = 68 because among all 11-digit sixth powers(47^6-68^6), 64^6=68719476736 and 68^6=98867482624 have the maximum sum of digits, 96 = A373994(11) and 68 is the largest number.
		

Crossrefs

Other powers: A379298, A380052, A380797, A380566.

Programs

  • C
    /* See A373994. */
  • Mathematica
    Table[t=SortBy[Map[{#,Total@IntegerDigits[#^6]}&,Range[Ceiling[10^((n-1)/6)],Floor[(10^n-1)^(1/6)]]],Last];
    Select[t,#[[2]]==t[[-1]][[2]]&][[1,1]],{n,36}]

A380052 a(n) is the largest number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).

Original entry on oeis.org

2, 4, 9, 19, 46, 92, 208, 453, 942, 1966, 4289, 9949, 12599, 43795, 99829, 215083, 446423, 989353, 2131842, 4081435, 9850783, 20714797, 43967926, 92827483, 190349299, 464110759, 989554129, 2132590453, 4559677342, 9654499999, 21253161559, 31037622999, 99594689449, 181610950229
Offset: 1

Views

Author

Zhining Yang, Jan 11 2025

Keywords

Examples

			For n=7, among cubes which are 7 digits long the maximum sum of digits is A373727(7) = 46 and this is attained by 3 cubes, the largest of which is 208^3 = 8998912 so that a(7) = 208.
		

Crossrefs

Other powers: A379298, A380797, A380566, A380193.

Programs

  • C
    /* See A373727. */
  • Mathematica
    Table[SortBy[Map[{#, Total@IntegerDigits[#^3]} &,
         Range[Ceiling@CubeRoot[10^(n - 1)], CubeRoot[10^n - 1]]],
        Last][[-1]][[1]], {n, 18}]

A380797 a(n) is the largest number whose fourth power is an n-digit which has the maximum sum of digits (A373914(n)).

Original entry on oeis.org

1, 3, 5, 8, 16, 26, 56, 88, 118, 308, 518, 974, 1768, 2868, 5396, 8979, 17306, 28871, 55368, 97063, 167622, 289146, 562341, 835718, 1727156, 3154276, 5623116, 9397404, 17728256, 27831542, 53129506, 98665756, 166025442, 315265896, 510466356, 904245732, 1188893858, 2298249374, 5315776056
Offset: 1

Views

Author

Zhining Yang, Feb 03 2025

Keywords

Examples

			a(7) = 56 because among all 7-digit fourth powers, 56^4=9834496 is the largest one (another smaller is 47^4=487968) which has the maximum sum of digits, 43 = A373914(7).
		

Crossrefs

Other powers: A379298, A380052, A380566, A380193.

Programs

  • C
    /* See A373914. */
  • Mathematica
    a[n_]:=Module[{m=Floor[(10^n-1)^(1/4)], max=0},
    For[k=m, k>=Ceiling[10^((n-1)/4)], k--, t=Total@IntegerDigits[k^4];
    If[t>max, s=k; max=t]]; s];
    Table[a[n], {n, 30}]

A371728 a(n) is the largest number that is the digit sum of an n-digit square number.

Original entry on oeis.org

9, 13, 19, 31, 40, 46, 54, 63, 70, 81, 88, 97, 106, 112, 121, 130, 136, 148, 154, 162, 171, 180, 187, 193, 205, 211, 220, 229, 235, 244, 253, 262, 271, 277, 286, 297, 301, 310, 319, 331, 334, 343, 355, 360, 367, 378, 388, 396
Offset: 1

Views

Author

Zhining Yang, Apr 04 2024

Keywords

Comments

a(n) appears to be approximately equal to (33*n-11)/4.

Examples

			a(6) = 46 because 46 is the largest digital sum encountered among all 6-digit squares (698896, 779689, 877969).
		

Crossrefs

Programs

  • Mathematica
    Array[Max@Map[Total@IntegerDigits[#^2] &, Range[Floor@Sqrt[10^(#)]], Floor@Sqrt[10^(# + 1) - 1]] &, 15]

Extensions

a(22)-a(48) from Zhao Hui Du, Apr 05 2024
a(49)-a(62) from Zhining Yang, May 08 2024
a(63)-a(64) from Zhining Yang, May 23 2024
Incorrect a(61) and unverified a(49) onward deleted by Zhining Yang, Mar 03 2025
Showing 1-4 of 4 results.