cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373914 a(n) is the largest digit sum of all n-digit fourth powers.

Original entry on oeis.org

1, 9, 13, 19, 25, 37, 43, 52, 55, 70, 76, 79, 85, 99, 103, 108, 118, 127, 135, 142, 144, 153, 171, 166, 178, 181, 189, 198, 205, 211, 220, 232, 234, 243, 252, 261, 265, 274, 279, 283, 297, 298, 313, 316, 325, 334, 337, 346, 358
Offset: 1

Views

Author

Zhining Yang, Jun 22 2024

Keywords

Examples

			a(3) = 13 because 13 is the largest digital sum encountered among all 3-digit fourth powers (attained at both fourth powers: 256, 625).
		

Crossrefs

Programs

  • C
    /* See links. */
  • Mathematica
    Table[Max@Map[Total@IntegerDigits[#^4] &, Range[Ceiling[10^((n - 1)/4)], Floor[(10^n-1)^(1/4)]]], {n, 32}]
  • PARI
    a(n) = my(m=ceil(10^((n-1)/4)), M=sqrtint(sqrtint(10^n))); vecmax(apply(sumdigits, vector(M-m+1, i, (i+m-1)^4))); \\ Michel Marcus, Jun 23 2024
    
  • Python
    from sympy import integer_nthroot
    def A373914(n): return max(sum(int(d) for d in str(m**4)) for m in range((lambda x:x[0]+(x[1]^1))(integer_nthroot(10**(n-1),4)),1+integer_nthroot(10**n-1,4)[0])) # Chai Wah Wu, Jun 26 2024
    

A380111 a(n) is the least number whose fourth power is an n-digit fourth power which has the maximum sum of digits (A373914(n)).

Original entry on oeis.org

1, 3, 4, 8, 16, 26, 47, 74, 118, 308, 518, 659, 1768, 2868, 5396, 8256, 14482, 28871, 55368, 97063, 147768, 228558, 562341, 835718, 1727156, 2878406, 5458722, 8175708, 16234882, 27831542, 53129506, 98665756, 166025442, 315265896, 510466356, 904245732, 1188893858, 2298249374, 5106312756
Offset: 1

Views

Author

Zhining Yang, Jan 12 2025

Keywords

Examples

			a(7) = 47 because among all 7-digit fourth powers, 47^4=487968 is the least one (another larger is 56^4=9834496) which has the maximum sum of digits, 43 = A373914(7).
		

Crossrefs

Other powers: A379869, A379650, A380567.

Programs

  • C
    /* See A373914. */
  • Mathematica
    Table[t=SortBy[Map[{#,Total@IntegerDigits[#^4]}&,Range[Ceiling[10^((n-1)/4)],Floor[(10^n-1)^(1/4)]]],Last];
    Select[t,#[[2]]==t[[-1]][[2]]&][[1,1]],{n,24}]

A380193 a(n) is the largest number whose sixth power is an n-digit sixth power which has the maximum sum of digits (A373994(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 19, 31, 46, 68, 96, 143, 206, 304, 461, 677, 977, 1194, 2136, 2896, 4633, 6373, 9763, 13817, 21542, 30643, 43693, 68123, 99812, 144083, 183967, 311296, 463976, 681017, 994333, 1441977, 2150104, 3022731, 4608562, 6765526, 9258023
Offset: 1

Views

Author

Zhining Yang, Jan 15 2025

Keywords

Examples

			a(11) = 68 because among all 11-digit sixth powers(47^6-68^6), 64^6=68719476736 and 68^6=98867482624 have the maximum sum of digits, 96 = A373994(11) and 68 is the largest number.
		

Crossrefs

Other powers: A379298, A380052, A380797, A380566.

Programs

  • C
    /* See A373994. */
  • Mathematica
    Table[t=SortBy[Map[{#,Total@IntegerDigits[#^6]}&,Range[Ceiling[10^((n-1)/6)],Floor[(10^n-1)^(1/6)]]],Last];
    Select[t,#[[2]]==t[[-1]][[2]]&][[1,1]],{n,36}]

A380052 a(n) is the largest number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).

Original entry on oeis.org

2, 4, 9, 19, 46, 92, 208, 453, 942, 1966, 4289, 9949, 12599, 43795, 99829, 215083, 446423, 989353, 2131842, 4081435, 9850783, 20714797, 43967926, 92827483, 190349299, 464110759, 989554129, 2132590453, 4559677342, 9654499999, 21253161559, 31037622999, 99594689449, 181610950229
Offset: 1

Views

Author

Zhining Yang, Jan 11 2025

Keywords

Examples

			For n=7, among cubes which are 7 digits long the maximum sum of digits is A373727(7) = 46 and this is attained by 3 cubes, the largest of which is 208^3 = 8998912 so that a(7) = 208.
		

Crossrefs

Other powers: A379298, A380797, A380566, A380193.

Programs

  • C
    /* See A373727. */
  • Mathematica
    Table[SortBy[Map[{#, Total@IntegerDigits[#^3]} &,
         Range[Ceiling@CubeRoot[10^(n - 1)], CubeRoot[10^n - 1]]],
        Last][[-1]][[1]], {n, 18}]

A379298 Largest number k for which k^2 is n digits long and has the maximum sum of digits possible for such a square (A371728(n)).

Original entry on oeis.org

3, 7, 28, 83, 313, 937, 3114, 9417, 29614, 94863, 298327, 987917, 3162083, 9893887, 29983327, 99483667, 315432874, 994927133, 2999833327, 9486778167, 31464263856, 99497231067, 299998333327, 999949483667, 3160522105583, 9892825177313, 29999983333327
Offset: 1

Views

Author

Zhining Yang, Feb 05 2025

Keywords

Examples

			a(6) = 937 because among all 6-digit squares, 698896 = 836^2, 779689 = 883^2, 877969 = 937^2 have the maximum sum of digits 46 = A371728(6), and 937 is the largest.
		

Crossrefs

Other powers: A380052, A380797, A380566, A380193.

Programs

  • Mathematica
    a[n_] := Module[{s = Floor[Sqrt[(10^n - 1)]], max = 0},
       For[k = s, k >= Ceiling[Sqrt[10^(n - 1)]], k--, t = DigitSum[k^2];
        If[t > max, s = k; max = t]]; s];
    Table[a[n], {n, 30}]

Formula

Conjecture: a(2*n) = A348303(n).
Showing 1-5 of 5 results.