cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A379301 Positive integers whose prime indices include a unique composite number.

Original entry on oeis.org

7, 13, 14, 19, 21, 23, 26, 28, 29, 35, 37, 38, 39, 42, 43, 46, 47, 52, 53, 56, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 84, 86, 87, 89, 92, 94, 95, 97, 101, 103, 104, 105, 106, 107, 111, 112, 113, 114, 115, 116, 117, 119, 122, 126, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 70 are {1,3,4}, so 70 is in the sequence.
The prime indices of 98 are {1,4,4}, so 98 is not in the sequence.
		

Crossrefs

For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of one in A379300.
Partitions of this type are counted by A379302 (strict A379303).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.
- A379311 old prime, see A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],CompositeQ]]==1&]

A379312 Positive integers whose prime indices include a unique 1 or prime number.

Original entry on oeis.org

2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   14: {1,4}
   17: {7}
   21: {2,4}
   26: {1,6}
   31: {11}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   41: {13}
   46: {1,9}
   57: {2,8}
   58: {1,10}
   59: {17}
   65: {3,6}
   67: {19}
   69: {2,9}
   74: {1,12}
   77: {4,5}
		

Crossrefs

These "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of ones in A379311, see A379313.
Partitions of this type are counted by A379314, strict A379315.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]

A379316 Positive integers whose prime indices include a unique squarefree number.

Original entry on oeis.org

2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   21: {2,4}
   29: {10}
   31: {11}
   35: {3,4}
   38: {1,8}
   41: {13}
   43: {14}
   46: {1,9}
		

Crossrefs

For all squarefree parts we have A302478, zeros of A379310.
Positions of 1 in A379306.
For no squarefree parts we have A379307, counted by A114374, strict A256012.
Partitions of this type are counted by A379308, strict A379309.
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 prime or 1, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]

A379311 Number of prime indices of n that are 1 or prime.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 0, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 1, 3, 2, 0, 3, 1, 5, 2, 2, 1, 4, 0, 1, 1, 4, 1, 2, 0, 3, 3, 1, 0, 5, 0, 3, 2, 2, 0, 4, 2, 3, 1, 1, 1, 4, 0, 2, 2, 6, 1, 3, 1, 3, 1, 2, 0, 5, 0, 1, 3, 2, 1, 2, 0, 5, 4, 2, 1, 3, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 1.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 1.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000079.
These "old" primes are listed by A008578.
Positions of zero are A320629, counted by A023895 (strict A204389).
Positions of one are A379312, counted by A379314 (strict A379315).
Positions of nonzero terms are A379313.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526, A173390, A376683, A376855.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],#==1||PrimeQ[#]&]],{n,100}]

Formula

Totally additive with a(prime(k)) = A080339(k).

A379302 Number of integer partitions of n with a unique composite part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 7, 11, 16, 23, 32, 43, 58, 77, 100, 129, 164, 207, 259, 323, 398, 489, 595, 723, 872, 1049, 1255, 1495, 1774, 2097, 2472, 2903, 3399, 3969, 4618, 5362, 6210, 7173, 8268, 9506, 10907, 12488, 14271, 16278, 18532, 21061, 23893, 27064
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Examples

			The a(0) = 0 through a(9) = 11 partitions:
  .  .  .  .  (4)  (41)  (6)    (43)    (8)      (9)
                         (42)   (61)    (62)     (54)
                         (411)  (421)   (422)    (63)
                                (4111)  (431)    (81)
                                        (611)    (432)
                                        (4211)   (621)
                                        (41111)  (4221)
                                                 (4311)
                                                 (6111)
                                                 (42111)
                                                 (411111)
		

Crossrefs

If all parts are composite we have A023895 (strict A204389), ranks A320629.
If no parts are composite we have A034891 (strict A036497), ranks A302540.
Ranked by A379301 = positions of 1 in A379300.
The strict case is A379303.
For a unique prime part we have A379304 (strict A379305), ranks A331915.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,_?CompositeQ]==1&]],{n,0,30}]

A379307 Positive integers whose prime indices include no squarefree numbers.

Original entry on oeis.org

1, 7, 19, 23, 37, 49, 53, 61, 71, 89, 97, 103, 107, 131, 133, 151, 161, 173, 193, 197, 223, 227, 229, 239, 251, 259, 263, 281, 307, 311, 337, 343, 359, 361, 371, 379, 383, 409, 419, 427, 433, 437, 457, 463, 479, 497, 503, 521, 523, 529, 541, 569, 593, 613, 623
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    7: {4}
   19: {8}
   23: {9}
   37: {12}
   49: {4,4}
   53: {16}
   61: {18}
   71: {20}
   89: {24}
   97: {25}
  103: {27}
  107: {28}
  131: {32}
  133: {4,8}
  151: {36}
  161: {4,9}
  173: {40}
		

Crossrefs

Partitions of this type are counted by A114374, strict A256012.
Positions of zero in A379306.
For a unique squarefree part we have A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==0&]

A379310 Number of nonsquarefree prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],Not@*SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).

A379303 Number of strict integer partitions of n with a unique composite part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 3, 6, 6, 8, 10, 10, 13, 15, 17, 20, 22, 24, 28, 31, 36, 40, 44, 50, 55, 62, 70, 75, 83, 89, 97, 108, 115, 128, 136, 146, 161, 172, 188, 203, 215, 233, 249, 269, 291, 309, 331, 353, 376, 405, 433, 459, 490, 518, 554, 592, 629, 670, 705
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Examples

			The a(4) = 1 through a(11) = 8 partitions:
  (4)  (4,1)  (6)    (4,3)    (8)      (9)      (10)       (6,5)
              (4,2)  (6,1)    (6,2)    (5,4)    (8,2)      (7,4)
                     (4,2,1)  (4,3,1)  (6,3)    (9,1)      (8,3)
                                       (8,1)    (5,4,1)    (9,2)
                                       (4,3,2)  (6,3,1)    (10,1)
                                       (6,2,1)  (4,3,2,1)  (5,4,2)
                                                           (6,3,2)
                                                           (8,2,1)
		

Crossrefs

If no parts are composite we have A036497, non-strict A034891 (ranks A302540).
If all parts are composite we have A204389, non-strict A023895 (ranks A320629).
The non-strict version is A379302, ranks A379301 (positions of 1 in A379300).
For a unique prime we have A379305, non-strict A379304 (ranks A331915).
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?CompositeQ]==1&]],{n,0,30}]

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]
Showing 1-10 of 11 results. Next