cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379351 a(n) is the greatest prime factor of n^2 + 2.

Original entry on oeis.org

2, 3, 3, 11, 3, 3, 19, 17, 11, 83, 17, 41, 73, 19, 11, 227, 43, 97, 163, 11, 67, 443, 3, 59, 17, 19, 113, 43, 131, 281, 41, 107, 19, 1091, 193, 409, 59, 457, 241, 1523, 89, 17, 883, 617, 19, 2027, 353, 67, 1153, 89, 139, 137, 41, 937, 1459, 1009, 523, 3251, 17, 43, 1801
Offset: 0

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@(Range[0,60]^2+2) (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    a(n) = {vecmax(factor(n^2 + 2)[,1])}

Formula

a(n) = A006530(A059100(n)).

A379349 Number of integers of the form k^2 + 2 whose greatest prime factor is A033203(n), the n-th prime not congruent to 5 or 7 mod 8.

Original entry on oeis.org

1, 5, 5, 7, 11, 12, 18, 18, 21, 25, 30, 47, 39, 45, 62, 63, 83, 81, 107, 105, 130
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Comments

See A379350 for additional information.

Examples

			Table showing n, p = A033203(n) and a(n):
   1    2    1
   2    3    5
   3   11    5
   4   17    7
   5   19   11
   6   41   12
   7   43   18
   8   59   18
   9   67   21
  10   73   25
  ...
		

Crossrefs

Row lengths of A379350.

A379352 a(n) is the smallest nonnegative integer k such the greatest prime factor of k^2 + 2 is A033203(n), the n-th prime not congruent to 5 or 7 mod 8.

Original entry on oeis.org

0, 1, 3, 7, 6, 11, 16, 23, 20, 12, 9, 40, 17, 31, 26, 28, 51, 50, 18, 78, 34, 93, 15, 109, 38, 91, 68, 29, 127, 108, 130, 75, 141, 107, 46, 120, 143, 35, 96, 69, 21, 214, 37, 126, 94, 67, 163, 56, 190, 261, 216, 153, 239, 207, 260, 104, 43, 288, 62, 206, 77, 262, 64, 151, 346
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Examples

			Table showing n, A033203(n), a(n), a(n)^2 + 2:
   1  2  0   2
   2  3  1   3
   3 11  3  11
   4 17  7  51 = 17*3
   5 19  6  38 = 19*2
   6 41 11 123 = 41*3
   7 43 16 258 = 43*3*2
   8 59 23 531 = 59*3^2
   9 67 20 402 = 67*3*2
  10 73 12 146 = 73*2
  ...
		

Crossrefs

Programs

  • PARI
    lista(n) = { my(L=List(),p=0); while(#L5&&r<>7, my(k=0); while(vecmax(factor(k^2 + 2)[,1]) <> p, k++); listput(L,k) )); Vec(L) }
Showing 1-3 of 3 results.