A379398 Numbers that can be written in exactly three different ways as a sum of at most nine positive third powers.
35, 56, 64, 65, 67, 68, 70, 75, 81, 82, 83, 84, 86, 89, 92, 93, 94, 96, 97, 98, 99, 100, 105, 107, 108, 110, 112, 113, 118, 119, 120, 121, 124, 125, 127, 130, 141, 142, 143, 148, 149, 150, 151, 167, 169, 174, 175, 176, 177, 178, 183, 186, 188, 202, 204, 212, 213, 214, 240, 247, 303
Offset: 1
Keywords
Examples
67 is in the sequence since 1^3+1^3+1^3+4^3 = 2^3+2^3+2^3+2^3+2^3+3^3 = 1^3+1^3+1^3+1^3+1^3+2^3+3^3+3^3.
Links
- Eric Weisstein's World of Mathematics, Waring's Problem
- Wikipedia, Waring's Problem
- Index entries for sequences related to sums of cubes
Programs
-
PARI
upto(n) = my(v=vector(n), maxb=sqrtnint(n,3)); forvec(x=vector(9,i,[0,maxb]), s=sum(i=1,9,x[i]^3); if(0
x==3,v,1)) \\ David A. Corneth, Dec 23 2024
Comments