A108110
Numbers n such that prime(k)*n+prime(k+1), for k=1,...,6 all are primes.
Original entry on oeis.org
284, 3074, 3494, 21698, 32138, 43874, 51794, 60674, 75494, 407348, 437438, 459794, 571478, 660878, 667358, 705464, 716624, 740774, 811028, 820154, 910664, 1059398, 1077998, 1122584, 1150748, 1210754, 1222898, 1265018, 1412174, 1461164, 1486574, 1585868, 1631438
Offset: 1
284 is OK because 2*284+3, 3*284+5, 5*284+7, 7*284+11, 11*284+13 and 13*284+17 all are primes.
-
s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 6}]]=={True}, s=Append[s, n]], {n, 2, 1000000, 2}];s
-
\\ See isok from A108117
for(n=1,2*10^6,if(isok(n,6),print1(n", "))) \\ Jason Yuen, Sep 02 2024
A108117
Numbers n such that prime(k)*n+prime(k+1), for k=1,...,7 all are primes.
Original entry on oeis.org
3494, 60674, 75494, 1122584, 2136044, 2473934, 3367244, 5600384, 6629804, 6910784, 7554644, 8572904, 10079144, 11848094, 11892164, 12043214, 12167594, 12269234, 12507284, 12700154, 13459664, 13924544, 14495354, 15005954, 16890914, 17827094, 20642984, 25796054
Offset: 1
3494 is OK because 2*3494+3, 3*3494+5, 5*3494+7, 7*3494+11, 11*3494+13, 13*3494+17 and 17*3494+19 all are primes.
-
s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 7}]]=={True}, s=Append[s, n]], {n, 4, 10000000, 10}];s
Select[Range[9*10^6],AllTrue[Prime[Range[7]]#+Prime[Range[2,8]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 24 2018 *)
-
isok(n,upto=7)=for(k=1,upto,if(!isprime(prime(k)*n+prime(k+1)),return(0)));1
for(n=1,3*10^7,if(isok(n),print1(n", "))) \\ Jason Yuen, Sep 02 2024
Showing 1-2 of 2 results.
Comments