cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108110 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,6 all are primes.

Original entry on oeis.org

284, 3074, 3494, 21698, 32138, 43874, 51794, 60674, 75494, 407348, 437438, 459794, 571478, 660878, 667358, 705464, 716624, 740774, 811028, 820154, 910664, 1059398, 1077998, 1122584, 1150748, 1210754, 1222898, 1265018, 1412174, 1461164, 1486574, 1585868, 1631438
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

n == 0 (mod 2). n == 2 (mod 3). n == 3 or 4 (mod 5). - Jason Yuen, Sep 02 2024

Examples

			284 is OK because 2*284+3, 3*284+5, 5*284+7, 7*284+11, 11*284+13 and 13*284+17 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5).
Cf. A108117 (k=1..7), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 6}]]=={True}, s=Append[s, n]], {n, 2, 1000000, 2}];s
  • PARI
    \\ See isok from A108117
    for(n=1,2*10^6,if(isok(n,6),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(22)-a(33) from Jason Yuen, Sep 02 2024

A108117 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,7 all are primes.

Original entry on oeis.org

3494, 60674, 75494, 1122584, 2136044, 2473934, 3367244, 5600384, 6629804, 6910784, 7554644, 8572904, 10079144, 11848094, 11892164, 12043214, 12167594, 12269234, 12507284, 12700154, 13459664, 13924544, 14495354, 15005954, 16890914, 17827094, 20642984, 25796054
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

The only n, for which also 19*3494+23 is prime, is n=5600384. In principle, n == 4 (mod 10) can give primes of the form prime(k)*n+prime(k+1), for all k from 1 up to 41, while prime(42)*4+prime(43)=181*4+191 == 5 (mod 10) that is nonprime. It'd be very interesting to find at least one n such that prime(k)*n+prime(k+1), k=1,...,41 are all prime.
There are no values of n such that prime(k)*n+prime(k+1), k=1,...,9 are all prime. Proof: If n = 3*i then 2*(3*i)+3 = 3*(2*i+1) is not prime. If n = 3*i+1 then 5*(3*i+1)+7 = 3*(5*i+4) is not prime. If n = 3*i+2 then 23*(3*i+2)+29 = 3*(23*i+25) is not prime. - Jason Yuen, Sep 02 2024

Examples

			3494 is OK because 2*3494+3, 3*3494+5, 5*3494+7, 7*3494+11, 11*3494+13, 13*3494+17 and 17*3494+19 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5), A108976 (k=7).
Cf. A108110 (k=1..6), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 7}]]=={True}, s=Append[s, n]], {n, 4, 10000000, 10}];s
    Select[Range[9*10^6],AllTrue[Prime[Range[7]]#+Prime[Range[2,8]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    isok(n,upto=7)=for(k=1,upto,if(!isprime(prime(k)*n+prime(k+1)),return(0)));1
    for(n=1,3*10^7,if(isok(n),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(13)-a(28) from Jason Yuen, Sep 02 2024
Showing 1-2 of 2 results.