A379483 a(n) is the number of trailing 1-bits in the binary representation of sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 3, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 2, 1, 1, 2, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 7, 1, 2, 4, 4, 1, 1, 2, 2, 1, 4, 6, 1, 3, 1, 3, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 7, 4, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 7, 4, 1, 2, 1, 2, 6, 1, 2, 1, 1, 3, 1, 6, 2
Offset: 1
Keywords
Links
Programs
-
Mathematica
{1}~Join~Array[Length@ Last@ Split[IntegerDigits[#, 2]][[1 ;; -1 ;; 2]] &[ DivisorSigma[1, Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2] ] &, 105, 2] (* Michael De Vlieger, Dec 27 2024 *)
-
PARI
A379483(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); valuation(1+sigma(factorback(f)),2); };