A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).
1, 2, 11, 43, 53, 4, 37, 293, 329, 103, 113, 107, 809, 129, 809, 12913, 41119, 39691, 41833, 8081, 33395, 32443, 33871, 10973, 148361, 48275, 7149, 34861, 108119, 319937, 164941, 1761311, 112361, 662011, 5405483, 26502319, 516671461, 508357441, 3620857237, 3556192637
Offset: 1
Examples
Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 293/360, 329/360, 103/120, 113/120, 107/120, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Olivier Bordellès and Benoit Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3. See p. 4, eq. (vi).
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.9, pp. 28-29.
Programs
-
Mathematica
usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
-
PARI
usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);} list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(numerator(s), ", "))};