A366835 In the pair (A246655(n), A246655(n+1)), how many primes are there?
2, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2
Offset: 1
Keywords
Examples
a(1) = 2 because in the first prime power pair (2 and 3) there are two primes. a(14) = 0 because in the 14th prime power pair (25 and 27) there are no primes.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, 1038 X 1038 raster of a(n), n = 1..1077444, read left to right in rows, then top to bottom, showing a(n) = 0 in white, a(n) = 1 in red, and a(n) = 2 in dark blue.
Crossrefs
Programs
-
Mathematica
With[{upto=500},Map[Count[#,_?PrimeQ]&,Partition[Select[Range[upto],PrimePowerQ],2,1]]] (* Considers prime powers up to 500 *)
-
PARI
lista(nn) = my(v=[p| p <- [1..nn], isprimepower(p)]); vector(#v-1, k, isprime(v[k]) + isprime(v[k+1])); \\ Michel Marcus, Oct 26 2023
Comments