A379552 Number of pairs (d, k/d), d < k/d, such that d|k, rad(d) = rad(k/d) = rad(k), but d|k/d, for k = A376936(n), where rad = A007947.
1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 2, 1, 2, 1, 1, 2, 3, 4, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 4, 1, 2, 1, 3, 4, 1, 2, 6, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 2, 2, 1, 2, 3, 1, 4, 2, 1, 1, 2, 1, 1, 3, 4
Offset: 1
Examples
Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Examples below show only (d, k/d) that have property Q: a(1) = 1 since b(1) = 216 = 12*18. a(2) = 1 since b(2) = 432 = 18*24. a(3) = 1 since b(3) = 648 = 12*54. a(4) = 2 since b(4) = 864 = 18*48 = 24*36. a(14) = 3 since b(14) = 3456 = 18*192 = 36*96 = 48*72. a(22) = 4 since b(22) = 7776 = 24*324 = 48*162 = 54*144 = 72*108, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 2^16; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; Table[k = s[[n]]; Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k], _?(And[1 < GCD @@ {##}, rad[#1] == rad[#2], Mod[#1, #2] != 0, Mod[#2, #1] != 0] & @@ # &)], {n, Length[s]}]
Comments