cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379568 Number of n-digit numbers that have exactly 5 divisors.

Original entry on oeis.org

0, 2, 1, 1, 3, 4, 5, 9, 15, 25, 37, 66, 107, 171, 293, 490, 810, 1362, 2302, 3889, 6552, 11149, 18950, 32255, 55053, 94096, 161036, 275896, 473709, 813669, 1399593, 2409905, 4154437, 7166774, 12375776, 21389092, 36994679, 64034719, 110918422, 192257157, 333449674, 578697626
Offset: 1

Views

Author

Seiichi Manyama, Dec 26 2024

Keywords

Comments

A number has exactly 5 divisors if and only if it is the fourth power of a prime. - David Radcliffe, Dec 29 2024

Crossrefs

Column k=5 of A284398.

Programs

  • Mathematica
    Table[PrimePi[10^(n/4)]-PrimePi[10^((n-1)/4)],{n,50}] (* Vincenzo Librandi, Dec 30 2024 *)
  • Python
    from sympy import primepi
    def a379568(n): return primepi(10**(n/4)) - primepi(10**((n-1)/4)) # David Radcliffe, Dec 29 2024

Formula

a(n) = PrimePi(10^(n/4)) - PrimePi(10^((n-1)/4)). - David Radcliffe, Dec 29 2024

Extensions

a(36)-a(42) from David Radcliffe, Dec 29 2024