cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379583 Numerators of the partial sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 13, 17, 21, 25, 51, 467, 539, 611, 629, 701, 773, 845, 1699, 1843, 1859, 2003, 2039, 2183, 2327, 2471, 2489, 62369, 65969, 198307, 201007, 211807, 222607, 233407, 467489, 489089, 510689, 532289, 532889, 554489, 576089, 597689, 600389, 621989, 643589, 665189
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 13/4, 17/4, 21/4, 25/4, 51/8, 467/72, 539/72, 611/72, 629/72, ...
		

Crossrefs

Cf. A057521, A191622, A370902, A370903, A379584 (denominators), A379585.

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A057521(k)).
a(n)/A379584(n) = c * n + O(n^(1/2)), where c = A191622 (Cloutier et al., 2014). The error term was improved by Tóth (2017) to O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.