A365638 Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.
1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
Offset: 0
Examples
Triangle begins: 1 1, 1 2, 4, 2 8, 24, 24, 6 64, 256, 384, 192, 24 1024, 5120, 10240, 7680, 1920, 120
Links
- Paul Erdős, On a problem in graph theory, The Mathematical Gazette, 47: 220-223 (1963).
Crossrefs
Programs
-
Maple
T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!: seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Nov 02 2023
-
PARI
T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))
Comments