cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379618 Denominators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 120, 24, 72, 72, 360, 2520, 1260, 2520, 7560, 7560, 1512, 7560, 7560, 30240, 30240, 30240, 6048, 78624, 78624, 393120, 78624, 393120, 393120, 196560, 196560, 98280, 10920, 21840, 109200, 2074800, 691600, 691600, 6224400, 6224400, 12448800
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A188999, A307159, A370904, A379616, A379617 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).