A379623 Irregular triangle read by rows: T(n,k) is the number of free polyominoes with n cells and width k, n >= 1, 1 <= k <= ceiling(n/2).
1, 1, 1, 1, 1, 4, 1, 5, 6, 1, 12, 22, 1, 18, 71, 18, 1, 37, 193, 138, 1, 60, 490, 661, 73, 1, 117, 1221, 2547, 769, 1, 200, 3011, 8417, 5189, 255, 1, 379, 7393, 26164, 25920, 3743, 1, 669, 18025, 78074, 108834, 32038, 950, 1, 1250, 43847, 229881, 408217, 201956, 16819
Offset: 1
Examples
Triangle begins: 1; 1; 1, 1; 1, 4; 1, 5, 6; 1, 12, 22; 1, 18, 71, 18; 1, 37, 193, 138; 1, 60, 490, 661, 73; 1, 117, 1221, 2547, 769; 1, 200, 3011, 8417, 5189, 255; 1, 379, 7393, 26164, 25920, 3743; 1, 669, 18025, 78074, 108834, 32038, 950; 1, 1250, 43847, 229881, 408217, 201956, 16819; ... Illustration for n = 5: The free polyominoes with five cells are also called free pentominoes. For k = 1 there is only one free pentomino of width 1 as shown below, so T(5,1) = 1. _ |_| |_| |_| |_| |_| . For k = 2 there are five free pentominoes of width 2 as shown below, so T(5,2) = 5. _ _ _ |_| _|_| _|_| _ _ _ _ |_| |_|_| |_|_| |_|_| |_|_| |_|_ |_| |_| |_|_| |_|_ |_|_| |_| |_| |_| |_|_| . For k = 3 there are six free pentominoes of width 3 as shown below, so T(5,3) = 6. _ _ _ _ _ _ _ _ _ _ _|_|_| |_|_|_| |_| |_|_ _|_|_ |_|_| |_|_| |_| |_|_ _ |_|_|_ |_|_|_| |_|_ |_| |_| |_|_|_| |_|_| |_| |_|_| . Therefore the 5th row of the triangle is [1, 5, 6] and the row sum is A000105(5) = 12. .
Links
- John Mason, Table of n, a(n) for n = 1..90 (first 18 rows)
- Index entries for sequences related to polyominoes.
Crossrefs
Extensions
a(21)-a(56) from Pontus von Brömssen, Jan 11 2025
Comments