cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379664 Decimal expansion of hypergeom([1/2, 1/2], [1], -2).

Original entry on oeis.org

7, 4, 5, 7, 4, 9, 1, 8, 7, 3, 1, 6, 3, 2, 9, 6, 0, 9, 9, 6, 2, 4, 8, 2, 0, 6, 5, 3, 5, 3, 4, 5, 1, 1, 0, 4, 3, 0, 2, 6, 7, 5, 1, 9, 7, 9, 8, 3, 2, 2, 1, 8, 6, 7, 2, 3, 3, 7, 4, 1, 3, 3, 7, 1, 0, 7, 0, 1, 0, 2, 5, 2, 0, 7, 5, 3, 5, 9, 1, 5, 2, 3, 2, 8, 6, 2, 9, 8, 9, 8, 4, 8, 2, 2, 2, 8, 2, 5, 4, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 29 2024

Keywords

Examples

			0.74574918731632960996248206535345110430267519798...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 17, page 143.

Crossrefs

Programs

  • Mathematica
    RealDigits[Hypergeometric2F1[1/2,1/2,1,-2],10,100][[1]] (* or *)
    RealDigits[Hypergeometric2F1[1/2,1/2,1,2/3]/Sqrt[3],10,100][[1]] (* or *)
    RealDigits[2EllipticK[2/3]/(Pi Sqrt[3]),10,100][[1]]
  • PARI
    hypergeom([1/2,1/2],1,2/3)/sqrt(3) \\ Hugo Pfoertner, Dec 29 2024
    
  • PARI
    hypergeom([1,1]/2,1,-2) \\ Charles R Greathouse IV, Feb 05 2025
    
  • PARI
    2*ellK(sqrt(2/3))/Pi/sqrt(3) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals hypergeom([1/2, 1/2], [1], 2/3)/sqrt(3).
Equals 2*EllipticK(2/3)/(Pi*sqrt(3)).