A379672 Number of finite sets of positive integers with sum + product = n.
0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 3, 1, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 1, 2, 4, 4, 4, 3, 2, 4, 3, 1, 5, 5, 2, 3, 4, 3, 3, 5, 5, 4, 2, 1, 5, 6, 3, 4, 4, 3, 4, 3, 2, 4, 6, 4, 5, 6, 3, 4, 5, 4, 4, 4, 5, 5, 2, 2, 6, 7, 4, 3, 5
Offset: 0
Keywords
Examples
The a(n) sets for n = 2, 11, 20, 35, 47, 60: {1} {1,5} {10} {3,8} {5,7} {30} {2,3} {2,6} {1,17} {1,23} {1,5,9} {1,3,4} {2,11} {2,15} {2,4,6} {1,4,6} {3,11} {1,2,19} {2,3,6} {1,3,14} {1,4,11}
Crossrefs
Arrays counting multisets by sum and product:
Counting and ranking multisets by comparing sum and product:
A318950 counts factorizations by sum.
Programs
-
Mathematica
Table[Length[Select[Join@@Array[IntegerPartitions,n,0],UnsameQ@@#&&Total[#]+Times@@#==n&]],{n,0,30}]
Extensions
More terms from Jinyuan Wang, Jan 11 2025
Comments