A379760 Smallest prime that is the sum of 2n+1 cubes of consecutive odd primes.
66347, 15643, 81647, 279397, 1961623, 3701627, 5644601, 2505187, 8016551, 4695947, 9335519, 6819443, 12830327, 35259463, 35278489, 56759723, 39944393, 86442623, 186387137, 95860493, 118647143, 170943137, 118651139, 509399153, 241399309, 381448853, 877324879
Offset: 1
Keywords
Examples
For n=2, the smallest sum of 2*n+1 = 5 cubed consecutive primes which is prime is a(2) = 7^3 + 11^3 + 13^3 + 17^3 + 19^3 = 15643.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
P3:= map(t -> t^3, select(isprime,[seq(i,i=3..10^5,2)])): SP3:= ListTools:-PartialSums(P3): f:= proc(n) local k; for k from 1 do if isprime(SP3[k+2*n+1]-SP3[k]) then return SP3[k+2*n+1]-SP3[k] fi od end proc: map(f, [$1..50]); # Robert Israel, Feb 02 2025
-
Mathematica
a[n_] := Block[{k = 1, s}, While[s = Sum[Prime[i]^3, {i, k, k + 2n}]; !PrimeQ[s], k++ ]; s]; Table[a[n], {n, 1, 27}]
-
PARI
a(n) = my(k=2, s = sum(i=0, 2*n, prime(k+i)^3)); while (!isprime(s), s -= prime(k)^3; k++; s += prime(k+2*n)^3;); s; \\ Michel Marcus, Jan 20 2025