cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379821 Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} (j!)^2 * Stirling1(n, j) * Stirling1(k, j).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 5, 2, 0, 0, 6, 14, 14, 6, 0, 0, 24, 50, 76, 50, 24, 0, 0, 120, 224, 360, 360, 224, 120, 0, 0, 720, 1216, 1908, 2392, 1908, 1216, 720, 0, 0, 5040, 7776, 11628, 15664, 15664, 11628, 7776, 5040, 0
Offset: 0

Views

Author

Peter Luschny, Jan 03 2025

Keywords

Examples

			Array begins:
  [0] 1,   0,    0,     0,      0,       0,        0,        0, ...
  [1] 0,   1,    1,     2,      6,      24,      120,      720, ...
  [2] 0,   1,    5,    14,     50,     224,     1216,     7776, ...
  [3] 0,   2,   14,    76,    360,    1908,    11628,    81072, ...
  [4] 0,   6,   50,   360,   2392,   15664,   110336,   856080, ...
  [5] 0,  24,  224,  1908,  15664,  126676,  1046780,  9169920, ...
  [6] 0, 120, 1216, 11628, 110336, 1046780, 10057204, 99846144, ...
.
Triangle T(n, k) = A(n - k, k) starts:
  [0] 1;
  [1] 0,   0;
  [2] 0,   1,    0;
  [3] 0,   1,    1,    0;
  [4] 0,   2,    5,    2,    0;
  [5] 0,   6,   14,   14,    6,    0;
  [6] 0,  24,   50,   76,   50,   24,    0;
  [7] 0, 120,  224,  360,  360,  224,  120,   0;
  [8] 0, 720, 1216, 1908, 2392, 1908, 1216, 720, 0;
		

Crossrefs

Main diagonal gives A382792.
The corresponding array with Stirling2 numbers is A371761.

Programs

  • Maple
    A := (n, k) -> local j; (-1)^(n + k)*add((j!)^2*Stirling1(n, j)*Stirling1(k, j), j = 0..k):
    seq(lprint(seq(A(n, k), k = 0..7)), n = 0..8);
  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*abs(stirling(n, j, 1)*stirling(k, j, 1))); \\ Seiichi Manyama, Apr 05 2025

Formula

E.g.f.: 1 / (1 - log(1-x) * log(1-y)). - Seiichi Manyama, Apr 05 2025