cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A382792 a(n) = Sum_{k=0..n} (Stirling1(n,k) * k!)^2.

Original entry on oeis.org

1, 1, 5, 76, 2392, 126676, 10057204, 1114096320, 163918005696, 30894047577216, 7254176241285504, 2075722128162164736, 710883208780304954112, 287061726161439955116288, 134961239570613490548986112, 73079781978184515947237031936, 45150931601954398539342470578176
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2025

Keywords

Comments

In general, for m>=1, Sum_{k=0..n} (abs(Stirling1(n,k)) * k!)^m ~ sqrt(2*Pi/m) * n^(m*n + 1/2) / (exp(1) - 1)^(m*n+1). - Vaclav Kotesovec, Apr 05 2025

Crossrefs

Main diagonal of A379821.

Programs

  • Mathematica
    Table[Sum[(StirlingS1[n, k] k!)^2, {k, 0, n}], {n, 0, 16}]
    Table[(n!)^2 SeriesCoefficient[1/(1 - Log[1 + x] Log[1 + y]), {x, 0, n}, {y, 0, n}], {n, 0, 16}]
  • PARI
    a(n) = sum(k=0, n, (k!*stirling(n, k, 1))^2); \\ Seiichi Manyama, Apr 05 2025

Formula

a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1 + x) * log(1 + y)).
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1 - x) * log(1 - y)).
a(n) ~ sqrt(Pi) * n^(2*n + 1/2) / (exp(1) - 1)^(2*n+1). - Vaclav Kotesovec, Apr 05 2025

A382800 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^3.

Original entry on oeis.org

1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 6, 27, 6, 0, 0, 18, 78, 78, 18, 0, 0, 72, 282, 588, 282, 72, 0, 0, 360, 1272, 2988, 2988, 1272, 360, 0, 0, 2160, 6936, 16344, 24612, 16344, 6936, 2160, 0, 0, 15120, 44496, 101448, 175632, 175632, 101448, 44496, 15120, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Examples

			Square array begins:
  1,  0,    0,     0,      0,       0, ...
  0,  3,    3,     6,     18,      72, ...
  0,  3,   27,    78,    282,    1272, ...
  0,  6,   78,   588,   2988,   16344, ...
  0, 18,  282,  2988,  24612,  175632, ...
  0, 72, 1272, 16344, 175632, 1669128, ...
		

Crossrefs

Main diagonal gives A382806.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n, j, 1)*stirling(k, j, 1)));

Formula

E.g.f.: 1 / (1 - log(1-x) * log(1-y))^3.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+2,2) * |Stirling1(n,j)| * |Stirling1(k,j)|.

A382799 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^2.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 14, 4, 0, 0, 12, 40, 40, 12, 0, 0, 48, 144, 260, 144, 48, 0, 0, 240, 648, 1284, 1284, 648, 240, 0, 0, 1440, 3528, 6936, 9588, 6936, 3528, 1440, 0, 0, 10080, 22608, 42744, 65928, 65928, 42744, 22608, 10080, 0, 0, 80640, 166896, 300240, 476808, 581952, 476808, 300240, 166896, 80640, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Examples

			Square array begins:
  1,  0,   0,    0,     0,      0, ...
  0,  2,   2,    4,    12,     48, ...
  0,  2,  14,   40,   144,    648, ...
  0,  4,  40,  260,  1284,   6936, ...
  0, 12, 144, 1284,  9588,  65928, ...
  0, 48, 648, 6936, 65928, 581952, ...
		

Crossrefs

Main diagonal gives A382804.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n, j, 1)*stirling(k, j, 1)));

Formula

E.g.f.: 1 / (1 - log(1-x) * log(1-y))^2.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} j! * (j+1)! * |Stirling1(n,j)| * |Stirling1(k,j)|.

A382823 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y)) ).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 6, 5, 5, 6, 24, 17, 17, 17, 24, 120, 74, 69, 69, 74, 120, 720, 394, 338, 337, 338, 394, 720, 5040, 2484, 1962, 1894, 1894, 1962, 2484, 5040, 40320, 18108, 13228, 12194, 12152, 12194, 13228, 18108, 40320, 362880, 149904, 101812, 89160, 87320, 87320, 89160, 101812, 149904, 362880
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Examples

			Square array begins:
    1,   1,    2,     6,    24,    120, ...
    1,   2,    5,    17,    74,    394, ...
    2,   5,   17,    69,   338,   1962, ...
    6,  17,   69,   337,  1894,  12194, ...
   24,  74,  338,  1894, 12152,  87320, ...
  120, 394, 1962, 12194, 87320, 696076, ...
		

Crossrefs

Columns k=0..1 give A000142, A000774.
Main diagonal gives A382826.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));

Formula

E.g.f.: 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y)) ).
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * |Stirling1(n+1,j+1)| * |Stirling1(k+1,j+1)|.
Showing 1-4 of 4 results.