A382824
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^2 ).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 6, 8, 8, 6, 24, 28, 34, 28, 24, 120, 124, 150, 150, 124, 120, 720, 668, 768, 854, 768, 668, 720, 5040, 4248, 4584, 5204, 5204, 4584, 4248, 5040, 40320, 31176, 31512, 35188, 37556, 35188, 31512, 31176, 40320, 362880, 259488, 246072, 265896, 290380, 290380, 265896, 246072, 259488, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 3, 8, 28, 124, 668, ...
2, 8, 34, 150, 768, 4584, ...
6, 28, 150, 854, 5204, 35188, ...
24, 124, 768, 5204, 37556, 290380, ...
120, 668, 4584, 35188, 290380, 2546852, ...
-
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382825
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^3 ).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 11, 11, 6, 24, 39, 55, 39, 24, 120, 174, 255, 255, 174, 120, 720, 942, 1338, 1623, 1338, 942, 720, 5040, 6012, 8106, 10434, 10434, 8106, 6012, 5040, 40320, 44244, 56292, 72762, 82116, 72762, 56292, 44244, 40320, 362880, 369072, 442860, 560988, 668580, 668580, 560988, 442860, 369072, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 11, 39, 174, 942, ...
2, 11, 55, 255, 1338, 8106, ...
6, 39, 255, 1623, 10434, 72762, ...
24, 174, 1338, 10434, 82116, 668580, ...
120, 942, 8106, 72762, 668580, 6302028, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382826
a(n) = Sum_{k=0..n} (k! * Stirling1(n+1,k+1))^2.
Original entry on oeis.org
1, 2, 17, 337, 12152, 696076, 58136500, 6673107316, 1008077743552, 193915431216576, 46281189562936704, 13420575661095930240, 4647502230640182602496, 1894412230202331489632256, 897850527136410029486517504, 489578762044356075253626875136
Offset: 0
-
a(n) = sum(k=0, n, (k!*stirling(n+1, k+1, 1))^2);
Showing 1-3 of 3 results.