A382823
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y)) ).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 5, 5, 6, 24, 17, 17, 17, 24, 120, 74, 69, 69, 74, 120, 720, 394, 338, 337, 338, 394, 720, 5040, 2484, 1962, 1894, 1894, 1962, 2484, 5040, 40320, 18108, 13228, 12194, 12152, 12194, 13228, 18108, 40320, 362880, 149904, 101812, 89160, 87320, 87320, 89160, 101812, 149904, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 2, 5, 17, 74, 394, ...
2, 5, 17, 69, 338, 1962, ...
6, 17, 69, 337, 1894, 12194, ...
24, 74, 338, 1894, 12152, 87320, ...
120, 394, 1962, 12194, 87320, 696076, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382825
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^3 ).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 11, 11, 6, 24, 39, 55, 39, 24, 120, 174, 255, 255, 174, 120, 720, 942, 1338, 1623, 1338, 942, 720, 5040, 6012, 8106, 10434, 10434, 8106, 6012, 5040, 40320, 44244, 56292, 72762, 82116, 72762, 56292, 44244, 40320, 362880, 369072, 442860, 560988, 668580, 668580, 560988, 442860, 369072, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 11, 39, 174, 942, ...
2, 11, 55, 255, 1338, 8106, ...
6, 39, 255, 1623, 10434, 72762, ...
24, 174, 1338, 10434, 82116, 668580, ...
120, 942, 8106, 72762, 668580, 6302028, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382827
a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n+1,k+1)^2.
Original entry on oeis.org
1, 3, 34, 854, 37556, 2546852, 246113904, 32104625520, 5433891955968, 1157778241057152, 303197684900579712, 95717977509042032256, 35847800701044816248064, 15713483696924130220098816, 7969364997624587289470810112, 4630203661005094483980386924544
Offset: 0
-
a(n) = sum(k=0, n, k!*(k+1)!*stirling(n+1, k+1, 1)^2);
Showing 1-3 of 3 results.