A382823
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y)) ).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 6, 5, 5, 6, 24, 17, 17, 17, 24, 120, 74, 69, 69, 74, 120, 720, 394, 338, 337, 338, 394, 720, 5040, 2484, 1962, 1894, 1894, 1962, 2484, 5040, 40320, 18108, 13228, 12194, 12152, 12194, 13228, 18108, 40320, 362880, 149904, 101812, 89160, 87320, 87320, 89160, 101812, 149904, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 2, 5, 17, 74, 394, ...
2, 5, 17, 69, 338, 1962, ...
6, 17, 69, 337, 1894, 12194, ...
24, 74, 338, 1894, 12152, 87320, ...
120, 394, 1962, 12194, 87320, 696076, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382824
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^2 ).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 6, 8, 8, 6, 24, 28, 34, 28, 24, 120, 124, 150, 150, 124, 120, 720, 668, 768, 854, 768, 668, 720, 5040, 4248, 4584, 5204, 5204, 4584, 4248, 5040, 40320, 31176, 31512, 35188, 37556, 35188, 31512, 31176, 40320, 362880, 259488, 246072, 265896, 290380, 290380, 265896, 246072, 259488, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 3, 8, 28, 124, 668, ...
2, 8, 34, 150, 768, 4584, ...
6, 28, 150, 854, 5204, 35188, ...
24, 124, 768, 5204, 37556, 290380, ...
120, 668, 4584, 35188, 290380, 2546852, ...
-
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382828
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling1(n+1,k+1)^2.
Original entry on oeis.org
1, 4, 55, 1623, 82116, 6302028, 680105112, 98011315608, 18163969766592, 4205977241171328, 1189459906531372224, 403300593144673493184, 161454763431242385682176, 75337361633768810384542464, 40524573487904551618353921024, 24890567631479746511661428751360
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n+1, k+1, 1)^2);
Showing 1-3 of 3 results.