A283799 Number of dispersed Dyck prefixes of length 2n and height n.
1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5)) *(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3)) *(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4 -124866*n^3+216436*n^2-129032*n+24526))*a(n-1)) / ((3*n+2)*(27*n+9)*(855*n-1504)*n)) end: seq(a(n), n=0..30); a := n -> binomial(2*n, n-iquo(n+1, 2)) + binomial(2*n, iquo(n+1,2)-1): seq(a(n), n = 0..28); # Peter Luschny, Jan 17 2025
-
Mathematica
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]]; a[n_] := Coefficient[b[2n, 0, 0], z, n]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)
Formula
Recursion: see Maple program.
a(n) = A282869(2*n, n).
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
From Peter Luschny, Jan 17 2025: (Start)
a(n) = binomial(2*n, n - floor(n/2 + 1/2)) + binomial(2*n, floor(n/2 + 1/2) - 1).
a(n) = A379822(n, (n + 1)/2). (End)